分析 由題意當(dāng)△AOC與△BOC的面積之和最大時(shí),CO⊥平面OAB,利用體積公式,即可求出三棱錐O-ABC的體積.
解答 解:由題意當(dāng)△AOC與△BOC的面積之和最大時(shí),CO⊥平面OAB,
∵OA=OB=2,OC=4$\sqrt{2}$,∠AOB=120°,
∴三棱錐O-ABC的體積為$\frac{1}{3}×\frac{1}{2}×2×2×sin120°×4\sqrt{2}$=$\frac{4\sqrt{6}}{3}$.
故答案為:$\frac{4\sqrt{6}}{3}$.
點(diǎn)評(píng) 本題考查三棱錐O-ABC的體積,考查學(xué)生分析解決問題的能力,確定當(dāng)△AOC與△BOC的面積之和最大時(shí),CO⊥平面OAB是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{3}$ | B. | -$\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $0<e<\frac{1}{2}$ | B. | $0<e<\frac{{\sqrt{3}}}{3}$ | C. | $\frac{1}{2}<e<1$ | D. | $\frac{{\sqrt{3}}}{3}<e<1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com