1.已知函數(shù)fK(x)的定義域為實數(shù)集R,滿足${f_K}(x)=\left\{{\begin{array}{l}{1,x∈K}\\{0,x∉K}\end{array}}\right.$(K是R的非空真子集),若在R上有兩個非空真子集M,N,且M∩N=∅,則$F(x)=\frac{{{f_M}(x)+{f_N}(x)+1}}{{{f_{M∪N}}(x)+1}}$的值域為{1}.

分析 對F(x)中的x屬于什么集合進行分類討論,利用題中新定義的函數(shù)求出f(x)的函數(shù)值,從而得到F(x)的值域即可.

解答 解:當x∈(M∪N)時,fM∪N(x)=1,而由于M∩N=φ,所以fM(x)+fN(x)=1,此時F(x)=1;
當x∉(M∪N)時,fM∪N(x)=0,fM(x)=fN(x)=0,此時F(x)=1,
∴函數(shù)F(x)的值域為{1}.
故答案為{1}.

點評 本題主要考查了函數(shù)的值域、分段函數(shù),解答關(guān)鍵是對于新定義的正確理解,屬于創(chuàng)新型題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知直線l1過直線l2:x+2y=0與l3:2x+2y-1=0的交點,與圓x2+y2+2y=0相切,則直線l1的方程是( 。
A.3x+4y-1=0B.3x+4y+9=0或x=1C.3x+4y+9=0D.3x+4y-1=0或x=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知實數(shù)集R為全集,A={x|log2(3-x)≤2},B={x||x-3|≤2},
(1)求A,B;
(2)求∁R(A∩B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某市文化部門為了了解本市市民對當?shù)氐胤綉蚯欠裣矏郏瑥?5-65歲的人群中隨機抽樣了n人,得到如下的統(tǒng)計表和頻率分布直方圖.
(Ⅰ)寫出其中的a、b及x和y的值;
(Ⅱ)若從第1,2,3組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中隨機抽取2人,用X表示其中是第3組的人數(shù),求X的分布列和期望.
組號分組喜愛人數(shù)喜愛人數(shù)
占本組的頻率
第1組[15,25)a0.10
第2組[25,35)b0.20
第3組[35,45)60.40
第4組[45,55)120.60
第5組[55,65]c0.80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知$|\overrightarrow a|=1,|\overrightarrow b|=2$且$<\vec a,\vec b>=120°$則$|2\overrightarrow a+\overrightarrow b|$等于(  )
A.4B.12C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3-5x2-bx,a,b∈R,x=3是f(x)的極值點,且f(1)=-1.
(1)求實數(shù)a,b的值;
(2)求f(x)在[2,4]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知在等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則公比q的所有可能的值為$\frac{1}{2}$或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)函數(shù)y=f(x)(x∈R)則“y=|f(x)|是偶函數(shù)”是“y=f(x)的圖象關(guān)于原點對稱”的必要不充分條件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=λSn+1(n∈N*,λ>0),且a1,a2+2,a3+3成等差數(shù)列.
(I)求數(shù)列{an}的通項公式;
(II)令bn=(-1)nlog2an•log2an+1,求數(shù)列{bn}的前2n項和T2n

查看答案和解析>>

同步練習冊答案