4.函數(shù)f(x)=x2+(2-k)x+1在[-2,2]上是單調(diào)函數(shù),則k的取值范圍為(-∞,-2]∪[6,+∞).

分析 若函數(shù)f(x)=x2+(2-k)x+1在[-2,2]上是單調(diào)函數(shù),則$\frac{k-2}{2}$≤-2,或$\frac{k-2}{2}$≥2,解得答案.

解答 解:函數(shù)f(x)=x2+(2-k)x+1的圖象是開口朝上,且以直線x=$\frac{k-2}{2}$為對稱軸的拋物線,
若函數(shù)f(x)=x2+(2-k)x+1在[-2,2]上是單調(diào)函數(shù),
則$\frac{k-2}{2}$≤-2,或$\frac{k-2}{2}$≥2,
解得:k∈(-∞,-2]∪[6,+∞),
故答案為:(-∞,-2]∪[6,+∞)

點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓F1:(x+$\sqrt{3}$)2+y2=16,圓心為F1,定點F2($\sqrt{3}$,0),P為圓F1上一點,線段PF2的垂直平分線與直線PF1交于點Q.
(1)求點Q的軌跡C的方程;
(2)過點(0,2)的直線l與曲線C交于不同的兩點A和B,且滿足∠AOB<90°(O為坐標原點),求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.關(guān)于θ的方程$\sqrt{3}$cosθ+sinθ+a=0在(0,2π)內(nèi)有兩相異實根α、β,則α+β的值為$\frac{π}{3}$或$\frac{7π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.若An=$\overline{{a_1}{a_2}…{a_n}}$(ai=0或1,i=1,2,…n),則稱An為0和1的一個n位排列,對于An,將排列$\overline{{a_n}{a_1}{a_2}…{a_{n-1}}}$記為R1(An);將排列$\overline{{a_{n-1}}{a_n}{a_1}{a_2}…{a_{n-2}}}$記為R2(An);依此類推,直至Rn(An)=An.對于排列An和Ri(An)(i=1,2,…n-1),它們對應位置數(shù)字相同的個數(shù)減去對應位置數(shù)字不同的個數(shù),叫做An和Ri(An)的相關(guān)值,記作t(An,Ri(An)),
(Ⅰ)例如A3=$\overline{110}$,則R1(A3)=$\overline{011}$,t(A3,R1(A3))=-1;
若t(An,Ri(An))=-1(i=1,2,…n-1),則稱An為最佳排列
(Ⅱ)當n=3,寫出所有的n位排列,并求出所有的最佳排列A3;
(Ⅲ)證明:當n=5,不存在最佳排列A5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知直線l:y=-2,定點F(0,2),P是直線$x-y+2\sqrt{2}=0$上的動點,若經(jīng)過點F,P的圓與l相切,則這個圓面積的最小值為4π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知長方體ABCD-A1B1C1D1,AB=BC=2,CC1=2$\sqrt{2}$,E為CC1的中點,則點A到平面BED的距離為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=4x2-4ax.
(1)若f(x)>1對任意的a∈[-1,1]恒成立,求x的取值范圍;
(2)若對任意的x∈[0,1],|f(x)|≤1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為f(x)的上界.已知函數(shù)$f(x)=1+a{(\frac{2})^x}+{(\frac{c}{4})^x}$.
(Ⅰ)當a=b=c=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否有上界,請說明理由;
(Ⅱ)若b=c=1,函數(shù)f(x)在[0,+∞)是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
(Ⅲ)已知s為正整數(shù),當a=1,b=-1,c=0時,是否存在整數(shù)λ,使得對任意的n∈N,不等式s≤λf(n)≤s+2恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)是R上的奇函數(shù),g(x)是R上的偶函數(shù),且有g(shù)(1)=0,當x>0時,有f′(x)g(x)+f(x)g′(x)>0,則f(x)g(x)>0的解集為(-1,0)∪(1,+∞).

查看答案和解析>>

同步練習冊答案