【題目】如圖,三棱柱ABC﹣A1B1C1中,側面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,
(Ⅰ)求證:AC⊥A1B;
(Ⅱ)求二面角A﹣A1C﹣B的余弦值.
【答案】(Ⅰ)證明:作AC的中點O,
∵A1A=A1C,且O為AC的中點,∴A1O⊥AC,
又側面AA1C1C⊥底面ABC,其交線為AC,且A1O平面AA1C1C,
∴A1O⊥底面ABC,
以O為坐標原點,OB、OC、OA1所在直線分別為x、y、z軸建立空間直角坐標系,
由已知得:O(0,0,0),A(0,﹣1,0),A1(0,0, ),C(0,1,0),C1(0,2, ),B(1,0,0).
則有: , ,
∵ =0,∴AC⊥A1B;
(Ⅱ)解:平面AA1C的一個法向量為 .
設平面A1CB的一個法向量 ,
由 ,取z=1,得 .
∴cos< >= .
∴二面角A﹣A1C﹣B的余弦值為 .
【解析】(Ⅰ)作AC的中點O,由A1A=A1C,且O為AC的中點,得A1O⊥AC,再由面面垂直的性質可得A1O⊥底面ABC,以O為坐標原點,OB、OC、OA1所在直線分別為x、y、z軸建立空間直角坐標系,求出所用點的坐標,由 =0,可得AC⊥A1B;(Ⅱ)平面AA1C的一個法向量為 ,設平面A1CB的一個法向量 ,求出 ,由兩法向量所成角的余弦值可得二面角A﹣A1C﹣B的余弦值.
【考點精析】本題主要考查了直線與平面垂直的性質的相關知識點,需要掌握垂直于同一個平面的兩條直線平行才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,且底面ABCD為平行四邊形,若∠DAB=60°,AB=2,AD=1.
(1)求證:PA⊥BD;
(2)若∠PCD=45°,求點D到平面PBC的距離h.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A1 , A2為橢圓 =1的長軸的左、右端點,O為坐標原點,S,Q,T為橢圓上不同于A1 , A2的三點,直線QA1 , QA2 , OS,OT圍成一個平行四邊形OPQR,則|OS|2+|OT|2=( )
A.5
B.3+
C.9
D.14
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F分別是AB,BC的中點.將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于P.
(1)求證:平面PBD⊥平面BFDE;
(2)求二面角P﹣DE﹣F的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數F(x)= ,(a為實數).
(1)根據a的不同取值,討論函數y=f(x)的奇偶性,并說明理由;
(2)若對任意的x≥1,都有1≤f(x)≤3,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},{bn}滿足2Sn=(an+2)bn , 其中Sn是數列{an}的前n項和.
(1)若數列{an}是首項為 ,公比為﹣ 的等比數列,求數列{bn}的通項公式;
(2)若bn=n,a2=3,求證:數列{an}滿足an+an+2=2an+1 , 并寫出數列{an}的通項公式;
(3)在(2)的條件下,設cn= , 求證:數列{cn}中的任意一項總可以表示成該數列其他兩項之積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com