12.已知集合M={x∈Z|-x2+3x>0},N={x|x2-4<0},則M∩N=( 。
A.(0,2)B.(-2,0)C.{1,2}D.{1}

分析 求出M中不等式的整數(shù)解確定出M,求出N中不等式的解集確定出N,找出M與N的交集即可.

解答 解:M={x∈Z|-x2+3x>0}={1,2},N={x|x2-4<0}=(-2,2),
則M∩N={1}  
故選:D

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}\right.$,則z=($\frac{1}{2}$)4x+8y的最小值為( 。
A.($\frac{1}{2}$)28B.($\frac{1}{2}$)23C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=6cosθ
(1)若l的參數(shù)方程中的t=$\sqrt{2}$時(shí),得到M點(diǎn),求M的極坐標(biāo)和曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,1),l和曲線C交于A,B兩點(diǎn),求$\frac{1}{|PA|}+\frac{1}{|PB|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是C上一點(diǎn),若A到F的距離是A到y(tǒng)軸距離的兩倍,且三角形OAF的面積為1(O為坐標(biāo)原點(diǎn)),則p的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,3a=5csinA,cosB=-$\frac{5}{13}$.
(1)求sinA的值;
(2)設(shè)△ABC的面積為$\frac{33}{2}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,“A<B<C”是“cos2A>cos2B>cos2C”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在多面體ABCDEF中,四邊形ABCD為邊長為4的正方形,M是BC的中點(diǎn),EF∥平面ABCD,且EF=2,AE=DE=BF=CF=$2\sqrt{2}$.
(1)求證:ME⊥平面ADE;
(2)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知四棱錐P-ABCD中,底面為矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M為PC中點(diǎn).
(Ⅰ)在圖中作出平面ADM與PB的交點(diǎn)N,并指出點(diǎn)N所在位置(不要求給出理由);
(Ⅱ)在線段CD上是否存在一點(diǎn)E,使得直線AE與平面ADM所成角的正弦值為$\frac{\sqrt{10}}{10}$,若存在,請說明點(diǎn)E的位置;若不存在,請說明理由;
(Ⅲ)求二面角A-MD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定義在R上的函數(shù)f(x)滿足:f(x)+xf'(x)>0恒成立,若a=3f(3),b=f(1),c=2f(2)則( 。
A.a>c>bB.c>b>aC.c>a>bD.a>b>c

查看答案和解析>>

同步練習(xí)冊答案