函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則( 。
A、y=2sin(2x+
π
3
B、y=2sin(2x-
π
3
C、y=2sin(x+
π
6
D、y=-2sin(x+
π
6
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由函數(shù)圖象可求得A,T的值,從而ω=
π
=2,由點(diǎn)(-
π
6
,0)在函數(shù)圖象上,可解得:φ-
π
3
=kπ,k∈Z,即可求得φ的值,從而得解.
解答: 解:∵由函數(shù)圖象可知:A=2,T=
6
-(-
π
6
)
=π,
ω=
π
=2,
∴y=2sin(2x+φ),
∵點(diǎn)(-
π
6
,0)在函數(shù)圖象上,
∴有2sin[2×(-
π
6
)
+φ]=0,
∴可解得:φ-
π
3
=kπ,k∈Z,
∵|φ|<π,
∴φ=
π
3
,
∴y=2sin(2x+
π
3
).
故選:A.
點(diǎn)評(píng):本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,屬于常考題型,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(n)=sin
4
,n∈Z,則f (1)+f (2)+f (3)+…+f (2012)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,且(b2+c2-a2)sinA=2S△ABC
(1)求∠A的大;
(2)若a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=4sin(ωx+
3
),h(x)=cos(ωx+π)(ω>0).
(Ⅰ)當(dāng)ω=2時(shí),把y=g(x)的圖象向右平移
π
6
個(gè)單位得到函數(shù)y=p(x)的圖象,求函數(shù)y=p(x)的圖象的對(duì)稱中心坐標(biāo);
(Ⅱ)設(shè)f(x)=g(x)h(x),若f(x)的圖象與直線y=2-
3
的相鄰兩個(gè)交點(diǎn)之間的距離為π,求ω的值,并求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)點(diǎn)P(0,1),Q(2,1)的直線在y軸上的截距為( 。
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,在同一周期內(nèi),當(dāng)x=
π
6
時(shí),f(x)取得最大值2;當(dāng)x=
3
時(shí),f(x)取得最小值-2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0,
π
2
]時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了調(diào)查任教班級(jí)的作業(yè)完成的情況,將班級(jí)里的52名學(xué)生隨機(jī)編號(hào),用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本,已知5號(hào)、31號(hào)、44號(hào)同學(xué)在樣本中,那么樣本中還有一位同學(xué)的編號(hào)應(yīng)該是( 。
A、13B、17C、18D、21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P在半徑為1的半圓上運(yùn)動(dòng),AB是直徑,當(dāng)P沿半圓弧從A到B運(yùn)動(dòng)時(shí),點(diǎn)P經(jīng)過(guò)的路程x與△APB的面積y的函數(shù)y=f(x)的圖象是下圖中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
個(gè)單位長(zhǎng)度得到的函數(shù)圖象解析式為f(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案