【題目】英國(guó)統(tǒng)計(jì)學(xué)家E.H.辛普森1951年提出了著名的辛普森悖論,下面這個(gè)案例可以讓我們感受到這個(gè)悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):
法官甲 | 法官乙 | ||||||
終審結(jié)果 | 民事庭 | 行政庭 | 合計(jì) | 終審結(jié)果 | 民事庭 | 行政庭 | 合計(jì) |
維持 | 29 | 100 | 129 | 維持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合計(jì) | 32 | 118 | 150 | 合計(jì) | 100 | 25 | 125 |
記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,則下面說法正確的是
A. ,,B. ,,
C. ,,D. ,,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知z,y之間的一組數(shù)據(jù)如下表:
x | 1 | 3 | 6 | 7 | 8 |
y | 1 | 2 | 3 | 4 | 5 |
(1)從x ,y中各取一個(gè)數(shù),求x+y≥10的概率;
(2)對(duì)于表中數(shù)據(jù),甲、乙兩同學(xué)給出的擬合直線分別為與,試?yán)?/span>“最小平方法(也稱最小二乘法)”判斷哪條直線擬合程度更好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分
沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí)。如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長(zhǎng)度忽略不計(jì)).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個(gè)沙時(shí)為多少秒(精確到1秒)?
(2)細(xì)沙全部漏入下部后,恰好堆成個(gè)一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:四棱錐P-ABCD底面為一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥平面ABCD,F是PC中點(diǎn)。
(Ⅰ)求證:平面PDC⊥平面PAD;
(Ⅱ)求證:BF∥平面PAD。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱中,,,點(diǎn)E在上,且.
(1)求異面直線與所成角的正切值:
(2)求證:平面DBE;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科研人員在對(duì)人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡(jiǎn)單隨機(jī)樣本數(shù)據(jù),如下表:
(年齡/歲) | 26 | 27 | 39 | 41 | 49 | 53 | 56 | 58 | 60 | 61 |
(脂肪含量/%) | 14.5 | 17.8 | 21.2 | 25.9 | 26.3 | 29.6 | 31.4 | 33.5 | 35.2 | 34.6 |
根據(jù)上表的數(shù)據(jù)得到如下的散點(diǎn)圖.
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點(diǎn)圖:
(i)求;
(i)計(jì)算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.
(2)若關(guān)于的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計(jì)年齡為50歲時(shí)人體的脂肪含量.
附:參考數(shù)據(jù):img src="http://thumb.zyjl.cn/Upload/2019/08/18/08/786210e5/SYS201908180802150104289801_ST/SYS201908180802150104289801_ST.007.png" width="51" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,,,,,,
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓:過點(diǎn),,為橢圓的左、右焦點(diǎn),離心率為,圓的直徑為.
(1)求橢圓及圓的方程;
(2)設(shè)直線與圓相切于第一象限內(nèi)的點(diǎn).
①若直線與橢圓有且只有一個(gè)公共點(diǎn),求點(diǎn)的坐標(biāo);
②若直線與橢圓交于,兩點(diǎn),且的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是曲線:上的動(dòng)點(diǎn),延長(zhǎng)(是坐標(biāo)原點(diǎn))到,使得,點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若點(diǎn),分別是曲線的左、右焦點(diǎn),求的取值范圍;
(3)過點(diǎn)且不垂直軸的直線與曲線交于,兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 若不等式對(duì)任意上恒成立,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com