【題目】已知函數(shù) 若不等式對任意上恒成立,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

【答案】C

【解析】

設(shè),易得,分兩種情況討論,可得的表達(dá)式,由不等式對任意上恒成立,利用導(dǎo)數(shù)進(jìn)行計(jì)算,可得的取值范圍.

解:由題意得:設(shè),易得,

可得,與x軸的交點(diǎn)為,

當(dāng),由不等式對任意上恒成立,可得臨界值時,相切,此時,,

可得,可得切線斜率為2,,,可得切點(diǎn)坐標(biāo)(3,3),

可得切線方程:,切線與x軸的交點(diǎn)為,可得此時,,

綜合函數(shù)圖像可得;

同理,當(dāng),由相切,

(1)當(dāng),,可得,可得切線斜率為-2,,,可得切點(diǎn)坐標(biāo)(1,3),可得切線方程,可得,綜合函數(shù)圖像可得

(2)當(dāng),,相切,可得,

此時可得可得切線斜率為-2,,,可得切點(diǎn)坐標(biāo),

可得切線方程:,

可得切線與x軸的交點(diǎn)為,可得此時,,

綜合函數(shù)圖像可得,

綜上所述可得,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】英國統(tǒng)計(jì)學(xué)家EH.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):

法官甲

法官乙

終審結(jié)果

民事庭

行政庭

合計(jì)

終審結(jié)果

民事庭

行政庭

合計(jì)

維持

29

100

129

維持

90

20

110

推翻

3

18

21

推翻

10

5

15

合計(jì)

32

118

150

合計(jì)

100

25

125

記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,則下面說法正確的是

A. ,,B. ,,

C. ,,D. ,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國家標(biāo)準(zhǔn),日均值在微克/立方米以下,空氣質(zhì)量為一級;在微克應(yīng)立方米微克立方米之間,空氣質(zhì)量為二級:在微克/立方米以上,空氣質(zhì)量為超標(biāo).從某市年全年每天的監(jiān)測數(shù)據(jù)中隨機(jī)地抽取天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表:

日均值

(微克/立方米)

頻數(shù)(天)

1)從這天的日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽出天,求恰有天空氣質(zhì)量達(dá)到一級的概率;

2)從這天的數(shù)據(jù)中任取天數(shù)據(jù),記表示抽到監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,側(cè)面與底面垂直,、分別是的中點(diǎn),,,.

1)求證:平面;

2)若是線段上的任意一點(diǎn),求證:;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,垂直于以為直徑的圓所在的平面,點(diǎn)是圓周上異于,的任意一點(diǎn),則下列結(jié)論中正確的是(

平面

④平面平面

⑤平面平面

A.①②⑤B.②⑤C.②④⑤D.②③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位共有員工45人,其中男員工27人,女員工18.上級部門為了對該單位員工的工作業(yè)績進(jìn)行評估,采用按性別分層抽樣的方法抽取5名員工進(jìn)行考核.

1)求抽取的5人中男、女員工的人數(shù)分別是多少;

2)考核前,評估小組從抽取的5名員工中,隨機(jī)選出3人進(jìn)行訪談.求選出的3人中有1位男員工的概率;

3)考核分筆試和答辯兩項(xiàng).5名員工的筆試成績分別為78,85,89,92,96;結(jié)合答辯情況,他們的考核成績分別為95,88,102106,99.5名員工筆試成績與考核成績的方差分別記為,試比較的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加5項(xiàng)預(yù)賽,成績?nèi)缦拢?/span>

甲:78 76 74 90 82

乙:90 70 75 85 80

)用莖葉圖表示這兩組數(shù)據(jù);

)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從平均數(shù)、方差的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為直線上的動點(diǎn),,過作直線的垂線,的中垂線于點(diǎn),記點(diǎn)的軌跡為.

(Ⅰ)求曲線的方程;

(Ⅱ)若直線與圓相切于點(diǎn),與曲線交于,兩點(diǎn),且為線段的中點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點(diǎn)處有相同的切線.

(Ⅰ)若函數(shù)的圖象有兩個交點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)設(shè)函數(shù),,求證:

查看答案和解析>>

同步練習(xí)冊答案