如果橢圓的長、短軸之比為2∶1,那么它的離心率是

[  ]

A.
B.
C.
D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閔行區(qū)二模)已知橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)
,長軸兩端點(diǎn)為A、B,短軸上端點(diǎn)為C.
(1)若橢圓焦點(diǎn)坐標(biāo)為F1(2
2
,0)、F2(-2
2
,0)
,點(diǎn)M在橢圓上運(yùn)動(dòng),當(dāng)△ABM的最大面積為3時(shí),求其橢圓方程;
(2)對(duì)于(1)中的橢圓方程,作以C為直角頂點(diǎn)的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作
CP
垂直于
CQ
,點(diǎn)P、Q在橢圓上,試問在y軸上是否存在一點(diǎn)T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點(diǎn)T的坐標(biāo)和定值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年長郡中學(xué)二模理)(13分)  已知橢圓方程為,長軸兩端點(diǎn)為,短軸上端點(diǎn)為

(1)若橢圓焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上運(yùn)動(dòng),當(dāng)的最大面積為3時(shí),求其橢圓方程;

(2)對(duì)于(1)中的橢圓方程,作以為直角頂點(diǎn)的內(nèi)接于橢圓的等腰直角三角形,設(shè)直線的斜率為,試求的值;

(3)過任作垂直于,點(diǎn)在橢圓上,試問在軸上是否存在點(diǎn),使得直線的斜率與的斜率之積為定值,如果存在,找出一個(gè)點(diǎn)的坐標(biāo),如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省月考題 題型:解答題

已知橢圓方程為,長軸兩端點(diǎn)為A、B,短軸上端點(diǎn)為C.
(1)若橢圓焦點(diǎn)坐標(biāo)為,點(diǎn)M在橢圓上運(yùn)動(dòng),當(dāng)△ABM的最大面積為3時(shí),求其橢圓方程;
(2)對(duì)于(1)中的橢圓方程,作以C為直角頂點(diǎn)的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作垂直于,點(diǎn)P、Q在橢圓上,試問在y軸上是否存在一點(diǎn)T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點(diǎn)T的坐標(biāo)和定值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市閔行區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓方程為,長軸兩端點(diǎn)為A、B,短軸上端點(diǎn)為C.
(1)若橢圓焦點(diǎn)坐標(biāo)為,點(diǎn)M在橢圓上運(yùn)動(dòng),當(dāng)△ABM的最大面積為3時(shí),求其橢圓方程;
(2)對(duì)于(1)中的橢圓方程,作以C為直角頂點(diǎn)的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作垂直于,點(diǎn)P、Q在橢圓上,試問在y軸上是否存在一點(diǎn)T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點(diǎn)T的坐標(biāo)和定值,如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案