【題目】氣象意義上從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度均不低于”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)有( )
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
【答案】C
【解析】
根據(jù)數(shù)據(jù)的特點(diǎn)進(jìn)行估計(jì)出甲,乙,丙三地連續(xù)天的日平均溫度的記錄數(shù)據(jù),分析數(shù)據(jù)的可能性,即可得到答案
甲地:個(gè)數(shù)據(jù)的中位數(shù)為,眾數(shù)為,則甲地連續(xù)天的日平均溫度的記錄數(shù)據(jù)可能為:
,其連續(xù)天的日平均溫度不低于,符合進(jìn)入夏季的標(biāo)準(zhǔn),故正確
乙地:個(gè)數(shù)據(jù)的中位數(shù)為,總體均值為,當(dāng)個(gè)數(shù)據(jù)為時(shí),其連續(xù)天的日平均溫度有低于,不符合進(jìn)入夏季的標(biāo)準(zhǔn),故錯(cuò)誤
丙地:個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是,總體均值為,若有低于,則取,此時(shí)方差就超出了,可以知道其連續(xù)天的日平均溫度不低于,符合進(jìn)入夏季的標(biāo)準(zhǔn),故正確
綜上所述,則肯定進(jìn)入夏季的地區(qū)有個(gè)
故選
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)圖象上最高點(diǎn)與該最高點(diǎn)相鄰的圖象的對(duì)稱中心的距離為.
(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;
(2)把圖象上所有的點(diǎn)先橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再向左平移個(gè)單位得到函數(shù)的圖象.在中, , , 分別是角, , 的對(duì)邊,若, 的面積為, , , 成等差數(shù)列,求的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)處取得極值,求實(shí)數(shù)的值;并求此時(shí)上的最大值;
(Ⅱ)若函數(shù)不存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,,直線:(為參數(shù),).
(Ⅰ)求直線的普通方程;
(Ⅱ)在曲線上求一點(diǎn),使它到直線的距離最短,并求出點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相.某大型超市進(jìn)行扶貧工作,按計(jì)劃每年六月從精準(zhǔn)扶貧戶中訂購荔枝,每天進(jìn)貨量相同且每公斤20元,售價(jià)為每公斤24元,未售完的荔枝降價(jià)處理,以每公斤16元的價(jià)格當(dāng)天全部處理完.根據(jù)往年情況,每天需求量與當(dāng)天平均氣溫有關(guān).如果平均氣溫不低于25攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫低于15攝氏度,需求量為公斤.為了確定6月1日到30日的訂購數(shù)量,統(tǒng)計(jì)了前三年6月1日到30日各天的平均氣溫?cái)?shù)據(jù),得到如圖所示的頻數(shù)分布表:
平均氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
(Ⅰ)假設(shè)該商場(chǎng)在這90天內(nèi)每天進(jìn)貨100公斤,求這90天荔枝每天為該商場(chǎng)帶來的平均利潤(結(jié)果取整數(shù));
(Ⅱ)若該商場(chǎng)每天進(jìn)貨量為200公斤,以這90天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天該商場(chǎng)不虧損的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理是合情推理的是( )
①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);
②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是歸納出所有三角形的內(nèi)角和都是
③由,滿足,推出是奇函數(shù);
④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.
A. ①②④B. ①③④C. ②④D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年第24屆冬奧會(huì)將在中國北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看第23屆平昌冬奧會(huì)開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
(1)根據(jù)上表數(shù)據(jù),能否有的把握認(rèn)為,是否收看開幕式與性別有關(guān)?
(2)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會(huì)及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率.
附: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=2,前3項(xiàng)和為S3=.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形為矩形, ,為的中點(diǎn),將沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過程中,得到如下有三個(gè)命題:
①平面,且的長度為定值;
②三棱錐的最大體積為;
③在翻折過程中,存在某個(gè)位置,使得.
其中正確命題的序號(hào)為__________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com