【題目】隨著經(jīng)濟(jì)的發(fā)展,轎車已成為人們上班代步的一種重要工具.現(xiàn)將某人三年以來(lái)每周開車從家到公司的時(shí)間之和統(tǒng)計(jì)如圖所示.
(1)求此人這三年以來(lái)每周開車從家到公司的時(shí)間之和在(時(shí))內(nèi)的頻率;
(2)求此人這三年以來(lái)每周開車從家到公司的時(shí)間之和的平均數(shù)(每組取該組的中間值作代表);
(3)以頻率估計(jì)概率,記此人在接下來(lái)的四周內(nèi)每周開車從家到公司的時(shí)間之和在(時(shí))內(nèi)的周數(shù)為,求的分布列以及數(shù)學(xué)期望.
【答案】(1);(2);(3)分布列見解析;數(shù)學(xué)期望.
【解析】
(1)用減去頻率直方圖中位于區(qū)間和的矩形的面積之和可得出結(jié)果;
(2)將各區(qū)間的中點(diǎn)值乘以對(duì)應(yīng)的頻率,再將所得的積全部相加即可得出所求平均數(shù);
(3)由題意可知,利用二項(xiàng)分布可得出隨機(jī)變量的概率分布列,并利用二項(xiàng)分布的均值可計(jì)算出隨機(jī)變量的數(shù)學(xué)期望.
(1)依題意,此人這三年以來(lái)每周開車從家到公司的時(shí)間之和在(時(shí))內(nèi)的頻率為;
(2)所求平均數(shù)為(時(shí));
(3)依題意,.,,,,.
故的分布列為
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值;
(2)已知關(guān)于的不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于和兩點(diǎn).
(1)當(dāng)時(shí),求直線的方程;
(2)若過(guò)點(diǎn)且垂直于直線的直線與拋物線交于兩點(diǎn),記與的面積分別為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)作一直線與雙曲線相交于、兩點(diǎn),若為中點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,平面,,,且,,分別為棱,,的中點(diǎn).
(1)證明:直線與共面;并求其所成角的余弦值;
(2)在棱上是否存在點(diǎn),使得平面,若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某軟件公司新開發(fā)一款學(xué)習(xí)軟件,該軟件把學(xué)科知識(shí)設(shè)計(jì)為由易到難共12關(guān)的闖關(guān)游戲.為了激發(fā)闖關(guān)熱情,每闖過(guò)一關(guān)都獎(jiǎng)勵(lì)若干慧幣(一種網(wǎng)絡(luò)虛擬幣).該軟件提供了三種獎(jiǎng)勵(lì)方案:第一種,每闖過(guò)一關(guān)獎(jiǎng)勵(lì)80慧幣;第二種,闖過(guò)第一關(guān)獎(jiǎng)勵(lì)8慧幣,以后每一關(guān)比前一關(guān)多獎(jiǎng)勵(lì)8慧幣;第三種,闖過(guò)第一關(guān)獎(jiǎng)勵(lì)1慧幣,以后每一關(guān)比前一關(guān)獎(jiǎng)勵(lì)翻一番(即增加1倍).游戲規(guī)定:闖關(guān)者須于闖關(guān)前任選一種獎(jiǎng)勵(lì)方案.已知一名闖關(guān)者沖關(guān)數(shù)一定超過(guò)3關(guān)但不會(huì)超過(guò)9關(guān),為了得到更多的慧幣,他應(yīng)如何選擇獎(jiǎng)勵(lì)方案?
A.選擇第一種獎(jiǎng)勵(lì)方案B.選擇第二種獎(jiǎng)勵(lì)方案
C.選擇第三種獎(jiǎng)勵(lì)方案D.選擇的獎(jiǎng)勵(lì)方案與其沖關(guān)數(shù)有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的右焦點(diǎn)為,左頂點(diǎn)為,線段的中點(diǎn)為,圓過(guò)點(diǎn),且與交于, 是等腰直角三角形,則圓的標(biāo)準(zhǔn)方程是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)為,,離心率為,點(diǎn)P為橢圓C上一動(dòng)點(diǎn),且的面積最大值為,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)點(diǎn),為橢圓C上的兩個(gè)動(dòng)點(diǎn),當(dāng)為多少時(shí),點(diǎn)O到直線MN的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買2臺(tái)機(jī)器的客戶,推出兩種超過(guò)質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過(guò)2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過(guò)4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購(gòu)買2臺(tái)這種機(jī)器。現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)購(gòu)買哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺(tái)數(shù) | 5 | 10 | 20 | 15 |
以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過(guò)質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com