2.已知A(2,0),B(0,2),直線1:kx-y-k-1=0與線段AB有公共點(diǎn),則l的斜率k的范圍是( 。
A.(-∞,-3]∪[1,+∞)B.[-3,1]C.[1,+∞)D.(-∞,-3]

分析 求出直線過(guò)定點(diǎn)C(1,-1),利用直線斜率和數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:由kx-y-k-1=0得k(x-1)-y-1=0,
則由$\left\{\begin{array}{l}{x-1=0}\\{-y-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,則直線過(guò)定點(diǎn)C(1,-1)
BC的斜率kBC=$\frac{-1-2}{1-0}=-3$,
AC的斜率kAC=$\frac{-1-0}{1-2}$=1,
若直線1:kx-y-k-1=0與線段AB有公共點(diǎn),
則滿足k≥kAC=1或k≤kBC=-3,
故l的斜率k的范圍是(-∞,-3]∪[1,+∞),
故選:A

點(diǎn)評(píng) 本題主要考查直線斜率的范圍的計(jì)算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.化簡(jiǎn)式子cos72°cos12°+sin72°sin12°的值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)滿足以下兩個(gè)條件的有窮數(shù)列a1,a2,a3,…,an為n階“期待數(shù)列”:
①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)若等比數(shù)列{an}為2k階“期待數(shù)列”( k∈N*),求公比q;
(2)若一個(gè)等差數(shù)列{an}既是2k階“期待數(shù)列”又是遞增數(shù)列( k∈N*),求該數(shù)列的通項(xiàng)公式;
(3)記n階“期待數(shù)列”{ai}的前k項(xiàng)和為Sk(k=1,2,3,…,n).
①求證:|Sk|≤$\frac{1}{2}$;
②若存在m∈{1,2,3,…,n}使Sm=$\frac{1}{2}$,試問(wèn)數(shù)列{Si}能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1上的任一點(diǎn),M,N分別為AB,BC1的中點(diǎn).
(1)求證:MN∥平面DCC1
(2)試確定點(diǎn)D的位置,使得DC1⊥平面DBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.兩條平行直線3x-4y-3=0和mx-8y+5=0之間的距離是( 。
A.$\frac{11}{10}$B.$\frac{8}{5}$C.$\frac{15}{7}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)z滿足iz=1-2i(i為虛數(shù)單位),則z的虛部為( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)0<x<y<a<1,則loga(xy)的取值范圍為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=2|x-2|+|x+1|
(1)求不等式f(x)<6的解集;
(2)設(shè)m,n,p為正實(shí)數(shù),且m+n+p=f(2),求證:mn+np+pm≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,為了測(cè)量A、C兩點(diǎn)間的距離,選取同一平面上B、D兩點(diǎn),測(cè)出四邊形ABCD各邊的長(zhǎng)度(單位:km):AB=5,BC=8,CD=3,DA=5,且∠B與∠D互補(bǔ),則AC的長(zhǎng)為(  )km.
A.7B.8C.9D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案