在數(shù)列{an}中,an=(-1)n(2n+1)(n∈N+),則a1+a2+a3+…+a2012=
 
考點(diǎn):數(shù)列的求和
專(zhuān)題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)通項(xiàng)公式,求出a1=-1,a2=3,a3=-5,a4=7,得到a2+a1=2,a4+a3=2,繼而得到規(guī)律,求出答案即可
解答: 解:∵an=(-1)n(2n+1),
∴a1=-1,a2=3,a3=-5,a4=7,
∴a2+a1=2,a4+a3=2,
∴a1+a2+a3+…+a2012=(a1+a2)+(a3+a4)+…+(a2011+a2012)=2×1006=2012,
故答案為:2012
點(diǎn)評(píng):本題考查數(shù)列的前n項(xiàng)和的求法,關(guān)鍵是找到規(guī)律,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用籬笆圍一個(gè)面積為100m2的矩形菜園,問(wèn)這個(gè)矩形菜園長(zhǎng)、寬各為多少時(shí),所用籬笆最短?最短的籬笆是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若O是△ABC所在平面內(nèi)一點(diǎn),且滿足|
OB
-
OC
|=|
OB
-
OA
+
OC
-
OA
|,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,側(cè)棱垂直底面的三棱柱ABC-A1B1C1的底面ABC位于平行四邊形ACDE中,AE=2,AC=4,∠AEB=60°,點(diǎn)B為DE中點(diǎn),連接A1E.
(1)求證:平面A1BC⊥平面A1ABB1
(2)設(shè)四棱錐A1-AEBC與四棱錐A1-B1BCC1的體積分別為V1,V2,求V1:V2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校將派A,B,C三個(gè)班參加首屆中學(xué)生合唱比賽,每個(gè)參賽班級(jí)獲獎(jiǎng)與不獲獎(jiǎng)的機(jī)會(huì)是相等的.
(1)求這三個(gè)班級(jí)中只有一個(gè)獲獎(jiǎng)的概率;
(2)求這三個(gè)班級(jí)不同時(shí)獲獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:
1
x+2
-
x2-4x+4
x2-x
÷(x+1-
3
x-1
),其中x滿足x2+2x-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+a
x+b
(a、b為常數(shù)).
(1)若a=2,b=1,解不等式f(x-1)>0;
(2)當(dāng)x∈[-1,2]時(shí),f (x)的值域?yàn)閇
5
4
,2],求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點(diǎn)分別為F1、F2,以F1F2為直徑的圓交雙曲線于點(diǎn)A,若∠F1F2A=
π
6
,則雙曲線的離心率為( 。
A、1+
3
B、4+2
3
C、4-
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=4x的焦點(diǎn)坐標(biāo)為( 。
A、(2,0)
B、(1,0)
C、(0,-4)
D、(-2,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案