12.已知:等腰梯形ABCD,其中AB為底邊,求證:AC=BD.

分析 證明△DAB≌△CBA,即可證明AC=BD.

解答 證明:等腰梯形ABCD,AD=BC,∠DAB=∠CBA.
在△DAB和△CBA中,$\left\{\begin{array}{l}{AD=BC}\\{∠DAB=∠CBA}\\{AB=BA}\end{array}\right.$,
∴△DAB≌△CBA,
∴AC=BD.

點評 本題考查等腰梯形的性質(zhì),考查三角形全等的證明,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ax3+x2-ax,其中a∈R且a≠0.
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極值;
(Ⅱ)求函數(shù)g(x)=$\frac{f(x)}{x}-\frac{3}{a}$lnx的單調(diào)區(qū)間;
(Ⅲ)若存在a∈(-∞,-1],使函數(shù)h(x)=f(x)+f′(x),x∈[-1,b](b>-1)在x=-1處取得最小值,試求b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點A($\sqrt{3},\frac{1}{2}$),離心率e=$\frac{\sqrt{3}}{2}$
(1)求橢圓M的方程;
(2)斜率為$\frac{\sqrt{3}}{6}$的直線l與橢圓M交于B、C兩點,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C的頂點在坐標(biāo)原點且關(guān)于x軸對稱,直線x-y+1=0與C有唯一的公共點.
(1)求拋物線C的方程;
(2)已知直線l與C交于A,B兩點,點M(1,t)在線段AB上,又點P的坐標(biāo)為(1,2),若△PAM與△PBM的面積之比等于$\frac{|PA|}{|PB|}$,問:l的斜率是否為定值?若是則求此定值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=ex+ln(x+1)-ax.
(Ⅰ)當(dāng)a=2時,證明:函數(shù)f(x)在定義域內(nèi)單調(diào)遞增;
(Ⅱ)當(dāng)x≥0時,f(x)≥cosx恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,已知D是△ABC中AB邊上一點,DE∥BC且交AC于E,EF∥AB且交BC于F,且S△ADE=1,S△EFC=4,則四邊形BFED的面積等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足a1=$\frac{71}{8}$,an+1=$\frac{7}{8}$an+1(n∈N*
(1)求證:數(shù)列{an-8}是等比數(shù)列,并求an;
(2)設(shè)bn=(n+1)•(an-8),若bn≤bk對n∈N*恒成立,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=x3+(1+a)x2+ax有兩個不同的極值點x1,x2,且對不等式f(x1)+f(x2)≤0恒成立,則實數(shù)a的取值范圍是$\frac{1}{2}$≤a≤2或a≤-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知:函數(shù)f(x)=ex-x-1,g(x)=ax+xcosx+1
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:a>-2時,存在x0∈(0,1),使g(x)>$\frac{1}{{e}^{x}}$.

查看答案和解析>>

同步練習(xí)冊答案