A. | (-3,3) | B. | [-3,3] | C. | [-3,3) | D. | [-2,2] |
分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.
解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式組對應的平面區(qū)域如圖(陰影部分):
平移直線y=$\frac{1}{2}x-\frac{z}{2}$,
由圖象可知當直線y=$\frac{1}{2}x-\frac{z}{2}$,過點C(3,0)時,直線y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,此時z最大,
代入目標函數(shù)z=x-2y,得z=3,
∴目標函數(shù)z=x-2y的最大值是3.
當直線y=$\frac{1}{2}x-\frac{z}{2}$,過點B時,直線y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,
此時z最小,
由$\left\{\begin{array}{l}{x-y=-1}\\{x+y=3}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即B(1,2)
代入目標函數(shù)z=x-2y,得z=1-2×2=-3
∴目標函數(shù)z=x-2y的最小值是-3.
故-3≤z≤3,
故選:B
點評 本題主要考查線性規(guī)劃的基本應用,利用目標函數(shù)的幾何意義是解決問題的關鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a+b≤2 012且a≤-b,則a<b | B. | 若a+b≤2 012且a≤-b,則a>b | ||
C. | 若a+b≤2 012或a≤-b,則a<b | D. | 若a+b≤2 012或a≤-b,則a>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 過三點確定一個平面 | B. | 四邊形是平面圖形 | ||
C. | 三條直線兩兩相交則確定一個平面 | D. | 兩個相交平面把空間分成四個區(qū)域 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a2-b2>1 | B. | a2-b2≥1 | C. | a2-b2<1 | D. | a2-b2≤1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com