若f(x)為奇函數(shù),且在(-∞,0)內(nèi)是增函數(shù),又f(-2)=0,則xf(x)<0的解集為(  )

A.(-2,0)∪(0,2) B.(-∞,-2)∪(0,2)

C.(-∞,-2)∪(2,+∞) D.(-2,0)∪(2,+∞)

 

A

【解析】因為f(x)為奇函數(shù),且f(-2)=0,所以f(2)=0.

作出f(x)大致圖象,如圖所示,由圖象可知:

當(dāng)-2<x<0時,f(x)>0,所以xf(x)<0;

當(dāng)0<x<2時,f(x)<0,所以xf(x)<0.

故不等式xf(x)<0的解集為(-2,0)∪(0,2),故選A.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-8函數(shù)與方程(解析版) 題型:選擇題

方程lnx=6-2x的根必定屬于區(qū)間(  )

A.(-2,1) B.(,4) C.(1,) D.(,)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-5指數(shù)及指數(shù)函數(shù)(解析版) 題型:選擇題

函數(shù)y=()的單調(diào)遞增區(qū)間是(  )

A.[-1,] B.(-∞,-1]

C.[2,+∞) D.[,2]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:選擇題

圖中曲線是冪函數(shù)y=xn在第一象限的圖象,已知n取±2,±四個值,則對應(yīng)于曲線C1,C2,C3,C4的n值依次為(  )

A.-2,-,,2 B.2,,-,-2

C.-,-2,2, D.2,,-2,-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:解答題

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:選擇題

下列函數(shù)中,既是奇函數(shù)又是減函數(shù)的是(  )

A.y= B.y=|x|

C.y=x+ D.y=2-x-2x

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:填空題

設(shè)函數(shù)f(x)的圖象關(guān)于y軸對稱,又已知f(x)在(0,+∞)上為減函數(shù),且f(1)=0,則不等式<0的解集為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:填空題

f(x)=,f(x)的定義域是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運算(解析版) 題型:解答題

設(shè)函數(shù)f(x)=ax-,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.

(1)求f(x)的解析式;

(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

 

查看答案和解析>>

同步練習(xí)冊答案