已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求實(shí)數(shù)a的取值范圍.

 

[-2,0]

【解析】【解析】
由于f(x)為偶函數(shù),且在[0,+∞)上為增函數(shù),由f(ax+1)≤f(x-2),則|ax+1|≤|x-2|.又x∈[,1],故|x-2|=2-x,即x-2≤ax+1≤2-x.

∴1-≤a≤-1在[,1]上恒成立.

(-1)min=0,(1-)max=-2,

∴-2≤a≤0.

故a的取值范圍為[-2,0].

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-8函數(shù)與方程(解析版) 題型:選擇題

函數(shù)f(x)=lnx-x-a有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )

A.(-∞,-1] B.(-∞,-1)

C.[-1,+∞) D.(-1,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-5指數(shù)及指數(shù)函數(shù)(解析版) 題型:填空題

已知函數(shù)f(x)=|2x-1|,a<b<c,且f(a)>f(c)>f(b),則下列結(jié)論中,一定成立的是________.

①a<0,b<0,c<0; ②a<0,b≥0,c>0;③2-a<2c; ④2a+2c<2.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:填空題

已知f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域?yàn)閇a-1,2a],則y=f(x)的值域?yàn)開_____.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:解答題

已知函數(shù)f(x)對任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-2.

(1)判斷f(x)的奇偶性;

(2)求證:f(x)是R上的減函數(shù);

(3)求f(x)在區(qū)間[-3,3]上的值域;

(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:選擇題

若f(x)為奇函數(shù),且在(-∞,0)內(nèi)是增函數(shù),又f(-2)=0,則xf(x)<0的解集為(  )

A.(-2,0)∪(0,2) B.(-∞,-2)∪(0,2)

C.(-∞,-2)∪(2,+∞) D.(-2,0)∪(2,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:填空題

設(shè)函數(shù)f(x)= (x+|x|),則函數(shù)f[f(x)]的值域?yàn)開_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:選擇題

對于實(shí)數(shù)x,符號[x]表示不超過x的最大整數(shù).例如,[π]=3,[-1.08]=-2.如果定義函數(shù)f(x)=x-[x],那么下列命題中正確的一個(gè)是(  )

A.f(5)=1

B.方程f(x)=有且僅有一個(gè)解

C.函數(shù)f(x)是周期函數(shù)

D.函數(shù)f(x)是減函數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:選擇題

函數(shù)f(x)=x2-2lnx的單調(diào)遞減區(qū)間是(  )

A.(0,1] B.[1,+∞)

C.(-∞,-1]∪(0,1] D.[-1,0)∪(0,1]

 

查看答案和解析>>

同步練習(xí)冊答案