18.已知f(x)=|3x-2|,且方程f(x)-a=0恰好有兩個實數(shù)根,則實數(shù)a的取值范圍為(0,2).

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)作出函數(shù)f(x)的圖象,利用數(shù)形結(jié)合進行求解即可.

解答 解:f(x)=|3x-2|=$\left\{\begin{array}{l}{{3}^{x}-2,}&{x≥lo{g}_{3}2}\\{2-{3}^{x},}&{x<lo{g}_{3}2}\end{array}\right.$,
由f(x)-a=0得f(x)=a,
作出函數(shù)f(x)和y=a的圖象如圖:
要使方程f(x)-a=0恰好有兩個實數(shù)根,
則0<a<2,
故答案為:(0,2)

點評 本題主要考查根的個數(shù)的判斷和應用,利用函數(shù)與方程之間的關系轉(zhuǎn)化為兩個函數(shù)的交點個數(shù)問題是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{3}{x}-x+alnx$,且x=3是函數(shù)f(x)的一個極值點.
(Ⅰ)求a的值;(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)設g(x)=f(x)-m,討論函數(shù)y=g(x)在區(qū)間(0,5]上零點的個數(shù)?
(參考數(shù)據(jù):ln5≈1.61,ln3≈1.10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(2+x)-log${\;}_{\frac{1}{2}}$(2-x),則不等式f(x)<f(1-x)的解集為( 。
A.(-∞,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-1,$\frac{1}{2}$)D.($\frac{1}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(實驗班題)已知函數(shù)f(x)=2cosxsin(x-$\frac{π}{3}$)+$\sqrt{3}$sin2x+sinxcosx.
(1)求函數(shù)y=f(x)的最小正周期;
(2)若2f(x)-m+1=0在[$\frac{π}{6}$,$\frac{7π}{12}$]有實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)y=loga(x-1)+3,(a>0且a≠1)的圖象恒過點P,則P的坐標是(2,3),若角α的終邊經(jīng)過點P,則sin2α-sin2α的值等于$-\frac{3}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線x-y+$\sqrt{2}$=0與圓x2+y2=4相交于A,B兩點,則弦AB的長為(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.直線l:x+my-1=0(m∈R)是圓C:x2+y2-4x-2y+1=0的對稱軸,若過點A(-4,m)作圓C的一條切線,切點為B,則|AB|=( 。
A.2B.4$\sqrt{2}$C.6D.2$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知各項均為正數(shù)的數(shù)列{an}的前n項和滿足Sn>1,6Sn=(an+1)(an+2).
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)求證:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某地區(qū)業(yè)余足球運動員共有15000人,其中男運動員9000人,女運動員6000人,為調(diào)查該地區(qū)業(yè)余足球運動員每周平均踢足球占用時間的情況,采用分層抽樣的方法,收集300位業(yè)務足球運動員每周平均踢足球占用時間的樣本數(shù)據(jù)(單位:小時)
得到業(yè)余足球運動員每周平均踢足球所占用時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
將“業(yè)務運動員的每周平均踢足球時間所占用時間超過4小時”
定義為“熱愛足球”.
(1)應收集多少位女運動員樣本數(shù)據(jù)?
(2)估計該地區(qū)每周平均踢足球所占用時間超過4個小時的概率.
(3)在樣本數(shù)據(jù)中,有80位女運動員“熱愛足球”.請畫出“熱愛足球與性別”列聯(lián)表,并判斷是否有99%的把握認為“熱愛足球與性別有關”.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879

查看答案和解析>>

同步練習冊答案