A. | 2 | B. | 4$\sqrt{2}$ | C. | 6 | D. | 2$\sqrt{10}$ |
分析 求出圓的標(biāo)準(zhǔn)方程可得圓心和半徑,由直線l:x+my-1=0經(jīng)過圓C的圓心(2,1),求得m的值,可得點A的坐標(biāo),再利用直線和圓相切的性質(zhì)求得|AB|的值.
解答 解:∵圓C:x2+y2-4x-2y+1=0,即(x-2)2+(y-1)2 =4,
表示以C(2,1)為圓心、半徑等于2的圓.
由題意可得,直線l:x+my-1=0經(jīng)過圓C的圓心(2,1),
故有2+m-1=0,∴m=-1,點A(-4,-1).
∵AC=$\sqrt{(-4-2)^{2}+(-1-1)^{2}}$=2$\sqrt{10}$,CB=R=2,
∴切線的長|AB|=$\sqrt{A{C}^{2}-C{B}^{2}}$=6.
故選C.
點評 本題主要考查圓的切線長的求法,解題時要注意圓的標(biāo)準(zhǔn)方程,直線和圓相切的性質(zhì)的合理運用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 由a1=1,an=3n-1,求出s1,s2,s3,猜出數(shù)列{an}的前n項和的表達(dá)式 | |
B. | 由于f(x)=xsinx滿足f(-x)=-f(x)對?x∈R都成立,推斷f(x)=xsinx為偶函數(shù) | |
C. | 由圓x2+y2=1的面積S=πr2,推斷:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的面積S=πab | |
D. | 由平面三角形的性質(zhì)推測空間四面體的性質(zhì) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com