10.直線l:x+my-1=0(m∈R)是圓C:x2+y2-4x-2y+1=0的對稱軸,若過點A(-4,m)作圓C的一條切線,切點為B,則|AB|=( 。
A.2B.4$\sqrt{2}$C.6D.2$\sqrt{10}$

分析 求出圓的標(biāo)準(zhǔn)方程可得圓心和半徑,由直線l:x+my-1=0經(jīng)過圓C的圓心(2,1),求得m的值,可得點A的坐標(biāo),再利用直線和圓相切的性質(zhì)求得|AB|的值.

解答 解:∵圓C:x2+y2-4x-2y+1=0,即(x-2)2+(y-1)2 =4,
表示以C(2,1)為圓心、半徑等于2的圓.
由題意可得,直線l:x+my-1=0經(jīng)過圓C的圓心(2,1),
故有2+m-1=0,∴m=-1,點A(-4,-1).
∵AC=$\sqrt{(-4-2)^{2}+(-1-1)^{2}}$=2$\sqrt{10}$,CB=R=2,
∴切線的長|AB|=$\sqrt{A{C}^{2}-C{B}^{2}}$=6.
故選C.

點評 本題主要考查圓的切線長的求法,解題時要注意圓的標(biāo)準(zhǔn)方程,直線和圓相切的性質(zhì)的合理運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.空間四點A、B、C、D滿足|AB|=1,|CD|=2,E、F分別是AD、BC的中點,若AB與CD所在直線的所成角為60°,則|EF|=$\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{7}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù),α∈(0,$\frac{π}{2}$)),以原點O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\frac{4cosθ}{{{{sin}^2}θ}}$.
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A,B兩點,線段AB的中點橫坐標(biāo)為1,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=|3x-2|,且方程f(x)-a=0恰好有兩個實數(shù)根,則實數(shù)a的取值范圍為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察等式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,…,由以上等式推測到一個一般的結(jié)論,對于n∈N*,13+23+33+…+n3=${[\frac{n(n+1)}{2}]^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=logax(a>0,且a≠1)與y=log${\;}_{\frac{1}{a}}$x(a>0,且a≠1)的圖象關(guān)于x軸對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若三個實數(shù)成等比數(shù)列,第一個數(shù)與第三個數(shù)的積為4,三個數(shù)的和為3,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.以平面直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位,已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),直線l的極坐標(biāo)方程為ρ=$\frac{4}{sinθ+cosθ}$,點P在l上.
(1)過P向圓C引切線,切點為F,求|PF|的最小值;
(2)射線OP交圓C于R,點Q在OP上,且滿足|OP|2=|OQ|•|OR|,求Q點軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列推理是歸納推理的是( 。
A.由a1=1,an=3n-1,求出s1,s2,s3,猜出數(shù)列{an}的前n項和的表達(dá)式
B.由于f(x)=xsinx滿足f(-x)=-f(x)對?x∈R都成立,推斷f(x)=xsinx為偶函數(shù)
C.由圓x2+y2=1的面積S=πr2,推斷:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的面積S=πab
D.由平面三角形的性質(zhì)推測空間四面體的性質(zhì)

查看答案和解析>>

同步練習(xí)冊答案