7.若復(fù)數(shù)z+3=1-i,則復(fù)數(shù)z的共軛復(fù)數(shù)的模( 。
A.1B.$\sqrt{2}$C.$\sqrt{5}$D.$\sqrt{10}$

分析 由復(fù)數(shù)z+3=1-i,得z=-2-i,進(jìn)一步求出z的共軛復(fù)數(shù),再由復(fù)數(shù)模的公式計(jì)算可得答案.

解答 解:由復(fù)數(shù)z+3=1-i,得z=-2-i.
則復(fù)數(shù)z的共軛復(fù)數(shù)是:-2+i,
共軛復(fù)數(shù)的模為:$\sqrt{(-2)^{2}+{1}^{2}}=\sqrt{5}$.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)f(x)與g(x)是相同函數(shù)的是( 。
A.f(x)=$\frac{x-1}{{x}^{2}-1}$,g(x)=$\frac{1}{1+x}$B.f(x)=($\sqrt{x}$)2,g(x)=$\sqrt{{x}^{2}}$
C.f(x)=$\root{3}{{x}^{4}-{x}^{3}}$,g(x)=x$\root{3}{x-1}$D.f(x)=1,g(x)=sin(arcsinx)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則( 。
A.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上單調(diào)遞增B.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上單調(diào)遞減
C.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值為-2D.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值為-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}{x-y≤0}\\{x+y-4<0}\\{x-1≥0}\end{array}\right.$,則使等式(t+2)x+(t-1)y+2t+4=0成立的t取值范圍為( 。
A.[-$\frac{5}{4}$,-$\frac{1}{2}$)B.(-∞,-$\frac{5}{4}$]∪(-$\frac{1}{2}$,+∞)C.[-$\frac{5}{4}$,1)D.[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.我國(guó)古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入3×3的方格中,使得每一行,每一列及對(duì)角線上的三個(gè)數(shù)的和都相等(如圖所示),我們規(guī)定:只要兩個(gè)幻方的對(duì)應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個(gè)數(shù)是( 。
834
159
672
A.9B.8C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x、y滿足約束條件$\left\{\begin{array}{l}{x-5≤0}\\{x+y-4≥0}\\{2x-y-5≥0}\end{array}\right.$,則z=2x+y的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.$\frac{1}{{tan{{20}°}}}-\frac{1}{{cos{{10}°}}}$的值等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為單位向量,且$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$的夾角為60°,若$\overrightarrow{a}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,$\overrightarrow$=x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$(其中x>0,y>0),則|$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$|=$\sqrt{7}$,$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知sin(x+$\frac{π}{6}$)=$\frac{1}{4}$,$\frac{π}{2}$<x<π;(1)求cos(x+$\frac{7π}{6}$)的值;(2)求sin($\frac{5π}{6}$-x)+sin2($\frac{π}{3}$-x)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案