已知方程a>0,a≠1)有兩個(gè)不等實(shí)根,則a的取值范圍是 (   )
A.(0,1)B.(1,+∞)C.(0,D.(1,2)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),,且
(Ⅰ)求函數(shù)的定義域,并證明在定義域上是奇函數(shù);
(Ⅱ)對(duì)于恒成立,求的取值范圍;
(Ⅲ)當(dāng),且時(shí),試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)如圖,當(dāng)甲船位于處時(shí)獲悉,在其正東方向相距20海里的處有一艘漁船遇險(xiǎn)等待營(yíng)救.甲船立即前往救援,同時(shí)把消息告知在甲船的南偏西30,相距10海里處的乙船.

(Ⅰ)求處于處的乙船和遇險(xiǎn)漁船間的距離;
(Ⅱ)設(shè)乙船沿直線方向前往處救援,其方向與角,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
學(xué)習(xí)曲線是1936年美國(guó)廉乃爾大學(xué)T. P. Wright博士在飛機(jī)制造過程中,通過對(duì)大量有關(guān)資料、案例的觀察、分析、研究,首次發(fā)現(xiàn)并提出來的。已知某類學(xué)習(xí)任務(wù)的學(xué)習(xí)曲線為:為掌握該任務(wù)的程度,t為學(xué)習(xí)時(shí)間),且這類學(xué)習(xí)任務(wù)中的某項(xiàng)任務(wù)滿足
(1)求的表達(dá)式,計(jì)算的含義;
(2)已知為該類學(xué)習(xí)任務(wù)在t時(shí)刻的學(xué)習(xí)效率指數(shù),研究表明,當(dāng)學(xué)習(xí)時(shí)間時(shí),學(xué)習(xí)效率最佳,當(dāng)學(xué)習(xí)效率最佳時(shí),求學(xué)習(xí)效率指數(shù)相應(yīng)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程的解是             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)是以2為周期的偶函數(shù),且當(dāng)x∈(0,1)時(shí),f(x)=2x-1,則f(log212)的值為        。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)
(1)求證:函數(shù)y=f(x)與y=g(x)的圖像有兩個(gè)交點(diǎn);
(2)設(shè)f(x)與g(x)的圖像交點(diǎn)A、B在x軸上的射影為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
本公司計(jì)劃2008年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元,甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為元/分鐘和200元/分鐘,規(guī)定甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是M、m,集合.若,且,記,則的最小值          。

查看答案和解析>>

同步練習(xí)冊(cè)答案