精英家教網 > 高中數學 > 題目詳情
設集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個圖形,其中能表示從集合M到集合N的函數關系的是( 。
分析:有函數的定義,集合M={x|0≤x≤2}中的每一個x值,在N={y|0≤y≤2}中都有唯一確定的一個y值與之對應,結合圖象得出結論.
解答:解:從集合M到集合能構成函數關系時,對于集合M={x|0≤x≤2}中的每一個x值,在N={y|0≤y≤2}中都有唯一確定的一個y值與之對應.
圖象A不滿足條件,因為當1<x≤2時,N中沒有y值與之對應.
圖象B不滿足條件,因為當x=2時,N中沒有y值與之對應.
圖象C不滿足條件,因為對于集合M={x|0<x≤2}中的每一個x值,在集合N中有2個y值與之對應,不滿足函數的定義.
只有D中的圖象滿足對于集合M={x|0≤x≤2}中的每一個x值,在N={y|0≤y≤2}中都有唯一確定的一個y值與之對應.
故選D.
點評:本題主要考查函數的定義,函數的圖象特征,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

7、設集合M={x|0≤x≤1},N={y|0≤y≤1}.如圖四個圖象中,表示從M到N的映射的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合M={x|0<x≤3},N={x|-1<x≤2},那么“a∈M”是“a∈N”的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合M={x|0<x≤3},集合N={x|0<x≤2},那么“a∈M”是“a∈N”的
必要不充分
必要不充分
條件.(用“充分不必要條件,必要不充分條件,充要條件”填空).

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合M={x|0≤x≤1},函數f(x)=
1
1-x
的定義域為N,則M∩N=
[0,1)
[0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

有下列命題:
①設集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分而不必要條件;
②“|
a
+
b
|<1
”是“|
a
|+|
b
|<1
”的必要不充分條件;
③“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;
④命題P:“?x0∈R,x02-x0-1>0”的否定?P:“?x∈R,x2-x-1≤0”.
則上述命題中為真命題的是( 。

查看答案和解析>>

同步練習冊答案