函數(shù)數(shù)學(xué)公式的單調(diào)遞增區(qū)間是


  1. A.
    [-1,+∞)
  2. B.
    (-∞,-1]
  3. C.
    (1,+∞)
  4. D.
    (-∞,-3)
D
分析:先求出函數(shù)的定義域,然后將復(fù)合函數(shù)分解為內(nèi)、外函數(shù),分別討論內(nèi)外函數(shù)的單調(diào)性,進(jìn)而根據(jù)復(fù)合函數(shù)單調(diào)性“同增異減”的原則,得到函數(shù)的單調(diào)遞增區(qū)間.
解答:函數(shù)的定義域?yàn)椋?∞,-3)∪(1,+∞)
令t=x2+2x-3,則y=
∵y=為減函數(shù),t=x2+2x-3在(-∞,-3)上為減函數(shù);在(1,+∞)為增函數(shù)
∴函數(shù)的單調(diào)遞增區(qū)間是為(-∞,-3).
故選D
點(diǎn)評(píng):本小題主要考查對(duì)數(shù)函數(shù)單調(diào)性的應(yīng)用、二次函數(shù)單調(diào)性的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

動(dòng)點(diǎn)A(x,y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是(
1
2
,
3
2
)
,則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動(dòng)點(diǎn)A(x,y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是(
3
2
,
1
2
),則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于 t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-x2+2lnx+8,則函數(shù)的單調(diào)遞增區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2|sinx|,則該函數(shù)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象如圖所示,則該函數(shù)的單調(diào)遞增區(qū)間是( 。
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案