分析 由條件利用二項(xiàng)展開(kāi)式的通項(xiàng)公式先求出n=9,再令通項(xiàng)公共式中x的冪指數(shù)等于1,求得r的值,可得含x的項(xiàng)的系數(shù).
解答 解:在($\sqrt{x}$+$\frac{1}{\root{3}{{x}^{2}}}$)n的展開(kāi)式中,它的通項(xiàng)公式為 Tr+1=${C}_{n}^{r}$•${x}^{\frac{3n-7r}{6}}$,
∵第5項(xiàng)與第3項(xiàng)的系數(shù)之比為7:2,
∴$\frac{{C}_{n}^{4}}{{C}_{n}^{2}}$=$\frac{7}{2}$,∴n=9,故它的通項(xiàng)公式為 Tr+1=${C}_{9}^{r}$•${x}^{\frac{27-7r}{6}}$,令27-7r=6,求得r=3,
則含x的項(xiàng)的系數(shù)是${C}_{9}^{3}$=84,
故答案為:84.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x-y≥0}\\{x+2y≥3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-y≥0}\\{x+2y≤3}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x-y≤0}\\{x+2y≥3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,$\sqrt{2}$] | B. | [$\sqrt{2}$-1,+∞) | C. | [-$\sqrt{2}$,$\sqrt{2}$] | D. | [$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1是集合N中最小的數(shù) | B. | x2-4x+4=0的解集為{2,2} | ||
C. | {0}不是空集 | D. | 高個(gè)的人組成的集合是無(wú)限集 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com