分析 (1)利用周期公式求函數(shù)的最小正周期,結(jié)合正弦函數(shù)的性質(zhì)可得答案.
(2)令f(x)=0求解x,可得f(x)的零點(diǎn)的集合.
解答 解:(1)函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)-1
∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
∵sin(2x+$\frac{π}{6}$)的最大值為1.
∴f(x)的最大值為2×1-1=1.
(2)令f(x)=0,即2sin(2x+$\frac{π}{6}$)-1=0,
∴sin(2x+$\frac{π}{6}$)=$\frac{1}{2}$,
可得:2x+$\frac{π}{6}$=$\frac{π}{6}$+2kπ或者2x+$\frac{π}{6}$=$\frac{5π}{6}$+2kπ.k∈Z.
解得:x=kπ或$\frac{π}{3}$+kπ.
∴f(x)的零點(diǎn)的集合為{x|x=kπ或x=$\frac{π}{3}$+kπ,k∈Z}.
點(diǎn)評(píng) 本題考查了正弦函數(shù)的性質(zhì)的運(yùn)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{3π}{4}$,$\frac{π}{4}$] | B. | [-$\frac{π}{2}$,$\frac{π}{2}$] | C. | [-π,0] | D. | [-$\frac{π}{4}$,$\frac{3π}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ②③ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 0 | C. | 6 | D. | log6$\frac{2}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com