對(duì)于集合數(shù)學(xué)公式,是否存在實(shí)數(shù)a,使A∪B=∅?若存在,求出a的取值,若不存在,試說(shuō)明理由.

解:∵A∪B=∅,∴A=B=∅,即二次方程x2-2ax+4a-3=0與x2-2ax+a2+a+2=0均無(wú)解,
,∴,∴1<a<2,
故存在實(shí)數(shù)a且a∈{a|1<a<2},使A∪B=∅.
分析:由A∪B=∅得A=B=∅,即兩個(gè)二次方程均無(wú)解,由判別式小于0得關(guān)于a的一元二次不等式組,解不等式組得a的取值范圍.
點(diǎn)評(píng):本題考查了集合的運(yùn)算,注意審題,得出集合A、B的具體集合,得出等價(jià)條件,轉(zhuǎn)化為不等式組求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:江西省師大附中2012屆高三上學(xué)期期中考試數(shù)學(xué)文科試題 題型:044

已知在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的取值范圍;

(2)記(1)中實(shí)數(shù)a的范圍為集合A,且設(shè)關(guān)于x的方程的兩個(gè)非零實(shí)根為x1,x2

①求|x1-x2|的最大值;

②試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1>|x1-x2|對(duì)于任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=4x+ax2-x3(x∈R)在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的值組成的集合A.

(2)設(shè)關(guān)于x的方程f(x)=2x+x3的兩個(gè)非零實(shí)根為x1x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)于任意aAt∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.”

(1)若函數(shù)f(x)為集合M中的任一元素,試證明方程f(x)-x=0只有一個(gè)實(shí)根;

(2)判斷函數(shù)g(x)=+3(x>1)是否是集合M中的元素,并說(shuō)明理由;

(3)“對(duì)于(2)中函數(shù)g(x)定義域內(nèi)的任一區(qū)間[m,n],都存在x0∈[m,n],使得g(n)-g(m)=(n-m)g′(x0)”,請(qǐng)利用函數(shù)y=lnx的圖像說(shuō)明這一結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省江南十校高三素質(zhì)教育聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)M是由滿足下列條件的函數(shù)f(X)構(gòu)成的集合:

①方程有實(shí)數(shù)根;

②函數(shù)的導(dǎo)數(shù) (滿足

(I )若函數(shù)為集合M中的任一元素,試證明萬(wàn)程只有一個(gè)實(shí)根

(II)    判斷函^是否是集合M中的元素,并說(shuō)明理由;

(III)   “對(duì)于(II)中函數(shù)定義域內(nèi)的任一區(qū)間,都存在,使得”,請(qǐng)利用函數(shù)的圖象說(shuō)明這一結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在區(qū)間上是增函數(shù).

(1)求實(shí)數(shù)的取值范圍;

(2)記(1)中實(shí)數(shù)的范圍為集合A,且設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根為.

①求的最大值;

②試問(wèn):是否存在實(shí)數(shù)m,使得不等式對(duì)于任意恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案