已知在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的取值范圍;

(2)記(1)中實(shí)數(shù)a的范圍為集合A,且設(shè)關(guān)于x的方程的兩個(gè)非零實(shí)根為x1,x2

①求|x1-x2|的最大值;

②試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1>|x1-x2|對(duì)于任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解:(1)在[-1,1]上是增函數(shù);

  ,在恒成立 、

  設(shè),則由①得

   解得

  所以,的取值范圍為

  (2)由(1)可知

  由

  ,設(shè),是方程的兩個(gè)非零實(shí)根.

  ,又

  

  于是要使對(duì)恒成立.

  即對(duì)恒成立  ②

  設(shè),則由②得

   解得

  故存在實(shí)數(shù)滿足題設(shè)條件.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處的導(dǎo)數(shù)值都為0.求函數(shù)f(x)的解析式,并求其在區(qū)間[-1,1]上的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=elnx+
k
x
(其中e是自然對(duì)數(shù)的底數(shù),k為正數(shù))
(I)若f(x)在x0處取得極值,且x0是f(x)的一個(gè)零點(diǎn),求k的值;
(Ⅱ)若k∈(1,e],求f(x)在區(qū)間[
1
e
,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)已知函數(shù)f(x)=
-x3+x2+bx+c,(x<1)
alnx,(x≥1)
和圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5.
(1)求實(shí)數(shù)b,c的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;
(3)若函數(shù)y=f(x)圖象上存在兩點(diǎn)P,Q,使得對(duì)任意給定的正實(shí)數(shù)a都滿足△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2(a-1)x+2,其中a∈R,a<0.
(1)求證:函數(shù)f(x)在區(qū)間(-∞,1)上是減函數(shù);
(2)若函數(shù)f(x)在區(qū)間[1,5]上的最小值為f(5),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=
1
3
a2x3-ax2+
2
3
,g(x)=-ax+1,x∈R

(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)在點(diǎn)(1,f(1))的切線方程;
(Ⅱ)求函數(shù)f(x)在[-1,1]的極值;
(Ⅲ)若在區(qū)間(0,
1
2
]
上至少存在一個(gè)實(shí)數(shù)x0,使f(x0)>g(x0)成立,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案