(本小題滿分14分)已知,
1)若,求方程的解;
2)若對在上有兩個零點,求的取值范圍.
(1)或。(2)。
解析試題分析:(1)當(dāng)k=2時,
① 當(dāng)時,≥1或≤-1時,方程化為2
解得,因為,舍去,所以.
②當(dāng)時,-1<<1時,方程化為,解得,
由①②得當(dāng)k=2時,方程的解所以或.
(II)解:不妨設(shè)0<x1<x2<2,
因為
所以在(0,1]是單調(diào)函數(shù),故=0在(0,1]上至多一個解,
若1<x1<x2<2,則x1x2=-<0,故不符題意,因此0<x1≤1<x2<2.
由得, 所以;
由得, 所以;
故當(dāng)時,方程在(0,2)上有兩個解.
考點:含絕對值的函數(shù)性質(zhì);一元二次函數(shù)的性質(zhì);函數(shù)的零點。
點評:本題主要考查方程的根與函數(shù)的零點的關(guān)系,以及分類討論的數(shù)學(xué)思想。含絕對值的有關(guān)問題,常要分類討論,在分類討論時,要做到不重不漏。同時也考查了學(xué)生分析問題、解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
已知函數(shù)成等差數(shù)列,點是函數(shù)圖像上任意一點,點關(guān)于原點的對稱點的軌跡是函數(shù)的圖像。
(1)解關(guān)于的不等式;
(2)當(dāng)時,總有恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)=(ex-1)。
(1)求的定義域;
(2)判斷函數(shù)的增減性,并用定義法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
定義在上的函數(shù)滿足,且當(dāng)時,,
(1)求在上的表達式;
(2)若,且,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)將進貨單價為80元的商品按90元一個售出時,能賣出400個,已知這種商品每個漲價1元,其銷售量就減少10個,為了取得最大利潤,每個售價應(yīng)定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com