(本小題滿分15分)將進貨單價為80元的商品按90元一個售出時,能賣出400個,已知這種商品每個漲價1元,其銷售量就減少10個,為了取得最大利潤,每個售價應(yīng)定為多少元?

105元。

解析試題分析:設(shè)每個售價應(yīng)定為90+x------------------2分
利潤y=(90+x-80)(400-10x)----------- ------8分
X=15取得最大利潤,每個售價應(yīng)定為105元 -------13分
考點:函數(shù)的實際應(yīng)用。
點評:研究數(shù)學模型,建立數(shù)學模型,進而借鑒數(shù)學模型,對提高解決實際問題的能力,以及提高數(shù)學素養(yǎng)都是十分重要的.建立模型的步驟可分為: (1) 分析問題中哪些是變量,哪些是常量,分別用字母表示; (2) 根據(jù)所給條件,運用數(shù)學知識,確定等量關(guān)系; (3) 寫出的解析式并指明定義域。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分6分)
(1)計算
(2)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知
1)若,求方程的解;
2)若對上有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù),在同一周期內(nèi),
時,取得最大值;當時,取得最小值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若時,函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)設(shè)函數(shù)的定義域為,記函數(shù)的最大值為.
(1)求的解析式;(2)已知試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)是奇函數(shù):
(1)求實數(shù)的值; 
(2)證明在區(qū)間上的單調(diào)遞減
(3)已知且不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)為常數(shù))。
(Ⅰ)函數(shù)的圖象在點()處的切線與函數(shù)的圖象相切,求實數(shù)的值;
(Ⅱ)設(shè),若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實數(shù)的取值范圍;
(Ⅲ)若,對于區(qū)間[1,2]內(nèi)的任意兩個不相等的實數(shù),,都有
成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在經(jīng)濟學中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).某公司每月生產(chǎn)x臺某種產(chǎn)品的收入為R(x)元,成本為C(x)元,且R(x)=3 000x-20x2,C(x)=500x+4 000(x∈N*).現(xiàn)已知該公司每月生產(chǎn)該產(chǎn)品不超過100臺.
(1)求利潤函數(shù)P(x)以及它的邊際利潤函數(shù)MP(x);
(2)求利潤函數(shù)的最大值與邊際利潤函數(shù)的最大值之差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知二次函數(shù)的圖象過點,且與軸有唯一的交點.(1)求的表達式;
(2)當時,求函數(shù)的最小值。

查看答案和解析>>

同步練習冊答案