分析 (1)設(shè)出直線方程,利用直線與圓的位置關(guān)系,列出不等式求解即可.
(2)設(shè)出M,N的坐標(biāo),利用直線與圓的方程聯(lián)立,通過(guò)韋達(dá)定理,結(jié)合向量的數(shù)量積,求出直線的斜率,然后判斷直線與圓的位置關(guān)系求解|MN|即可.
解答 解:(1)由題設(shè),可知直線l的方程為y=kx+1,因?yàn)橹本l與圓C交于兩點(diǎn),
由已知可得圓C的圓心C的坐標(biāo)(2,3),半徑R=1.
故由$\frac{|2k-3-1|}{1+{k}^{2}}$<1,解得:$\frac{4-\sqrt{7}}{3}$<k<$\frac{4+\sqrt{7}}{3}$
所以k的取值范圍為得($\frac{4-\sqrt{7}}{3}$,$\frac{4+\sqrt{7}}{3}$)
(2)設(shè)M(x1,y1),N(x2,y2).
將y=kx+1代入方程:(x-2)2+(y-3)2=1,
整理得(1+k2)x2-4(1+k)x+7=0.
所以x1+x2=$\frac{4(1+k)}{1+{k}^{2}}$,x1x2=$\frac{7}{1+{k}^{2}}$,
$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1x2+y1y2=(1+k2)(x1x2)+k(x1+x2)+1=$\frac{4k(1+k)}{1+{k}^{2}}$=12,
解得k=1,所以直線l的方程為y=x+1.
故圓心C在直線l上,所以|MN|=2.
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,以及直線和圓相交的弦長(zhǎng)公式的計(jì)算,考查學(xué)生的計(jì)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
B | $\overline{B}$ | 總計(jì) | |
A | 39 | 157 | 196 |
$\overline{A}$ | 29 | 167 | 196 |
總計(jì) | 68 | 324 | 392 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8$\sqrt{6}$π | B. | 24π | C. | 32$\sqrt{3}$π | D. | 48π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com