精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=sin2x+sinxcosx.
(Ⅰ)求函數f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)當x∈[0,]時,求函數f(x)的值域.

【答案】解:(I)f(x)=sin2x+sinxcosx=+sin2x
=sin(2x﹣)+
函數f(x)的最小正周期為T=π.
因為﹣+2kπ≤2x﹣+2kπ,解得﹣+kπ≤x≤+kπ,k∈Z,
所以函數f(x)的單調遞增區(qū)間是[﹣+kπ,+kπ],k∈Z,.
(Ⅱ)當x∈[0,]時,2x﹣∈[﹣,]
sin(2x﹣)∈[﹣,1],
所以函數f(x)的值域為f(x)∈[0,1+].
【解析】(I)先化簡求得解析式f(x)=sin(2x﹣)+ , 從而可求函數f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)先求2x﹣的范圍,可得sin(2x﹣)的范圍,從而可求函數f(x)的值域。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】嫦娥奔月,舉國歡慶,據科學計算,運載神六長征二號系列火箭,在點火第一秒鐘通過的路程為2 km,以后每秒鐘通過的路程都增加2 km,在達到離地面210 km的高度時,火箭與飛船分離,則這一過程大約需要的時間是______秒.

【答案】14

【解析】

設出每一秒鐘的路程為一數列,由題意可知此數列為等差數列,然后根據等差數列的前n項和的公式表示出離地面的高度,讓高度等于210列出關于n的方程,求出方程的解即可得到n的值.

設每一秒鐘通過的路程依次為a1,a2,a3,…,an,

則數列{an}是首項a1=2,公差d=2的等差數列,

由求和公式有na1+=210,即2n+n(n﹣1)=210,

解得n=14,

故答案為:14

【點睛】

在解決等差、等比數列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標明確;二是利用等差、等比數列的性質是兩種數列基本規(guī)律的深刻體現,應有意識地去應用.但在應用性質時要注意性質的前提條件,有時需要進行適當變形. 在解決等差、等比數列的運算問題時,經常采用“巧用性質、整體考慮、減少運算量”的方法.

型】填空
束】
16

【題目】已知直線l:+=1,M是直線l上的一個動點,過點Mx軸和y軸的垂線,垂足分別為A,B,P是線段AB的靠近點A的一個三等分點,P的軌跡方程為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中正確的是_____________ .(填序號)

①棱柱的面中,至少有兩個面互相平行;

以直角三角形的一邊為軸旋轉所得的旋轉體是圓錐;

用一個平面去截圓錐,得到一個圓錐和一個圓臺;

有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱;

⑤圓錐的頂點與底面圓周上任意一點的連線是圓錐的母線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=的圖象與函數y=2sinπx(﹣2≤x≤4)的圖象所有交點的橫坐標之和等于( 。
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐A﹣BCD中,側棱AB、AC、AD兩兩垂直,△ABC,△ACD,△ADB的面積分別為 , , 則三棱錐A﹣BCD的外接球的體積為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA=PB=AB=BC=2,∠CBA=∠PBC=60°,Q為線段BC的中點.
(1)求證:PA⊥BC;
(2)求點Q到平面PAC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C的參數方程為(θ為參數),直線l經過點P(1,2),傾斜角α=
(Ⅰ)寫出圓C的標準方程和直線l的參數方程;
(Ⅱ)設直線l與圓C相交于A、B兩點,求|PA||PB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓,離心率,短軸,拋物線頂點在原點,以坐標軸為對稱軸,焦點為,

(1)求橢圓和拋物線的方程;

(2)設坐標原點為,為拋物線上第一象限內的點,為橢圓是一點,且有,當線段的中點在軸上時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知拋物線的方程為x2=2py(p>0),過點A(0,﹣1)作直線l與拋物線相交于P,Q兩點,點B的坐標為(0,1),連接BP,BQ,設QB,BP與x軸分別相交于M,N兩點.如果QB的斜率與PB的斜率的乘積為﹣3,則∠MBN的大小等于

查看答案和解析>>

同步練習冊答案