某商區(qū)停車場臨時停車按時段收費,收費標準為:每輛汽車一次停車不超過小時收費元,超過小時的部分每小時收費元(不足小時的部分按小時計算).現(xiàn)有甲、乙二人在該商區(qū)臨時停車,兩人停車都不超過小時.
(1)若甲停車小時以上且不超過小時的概率為,停車付費多于元的概率為,求甲停車付費恰為元的概率;
(2)若每人停車的時長在每個時段的可能性相同,求甲、乙二人停車付費之和為元的概率.
(1)(2)

試題分析:(Ⅰ)解:設“甲臨時停車付費恰為元”為事件,       
.所以甲臨時停車付費恰為元的概率是.  
(Ⅱ)解:設甲停車付費元,乙停車付費元,其中.  
則甲、乙二人的停車費用構成的基本事件空間為:
,共種情形.      
其中,種情形符合題意  
故“甲、乙二人停車付費之和為元”的概率為
點評:幾何概型的概率是常考點。求幾何概型的概率,只要求出事件占總的比例即可。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

同時拋擲兩枚大小形狀都相同、質地均勻的骰子,求:
(1)一共有多少種不同的結果;
(2)點數(shù)之和4的概率;
(3)至少有一個點數(shù)為5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中隨機選取一個數(shù),從中隨機選取一個數(shù),則關于的方程有兩個不相等的實根的概率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中隨機選取一個數(shù),從中隨機選取一個數(shù),則的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

先后擲兩顆均勻的骰子,問
(1)至少有一顆是6點的概率是多少?
(2)當?shù)谝活w骰子的點數(shù)為3或6時,求兩顆骰子的點數(shù)之和大于8的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

10張獎券中只有3張有獎,5個人購買,每人1張,至少有1人中獎的概率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某產品分甲、乙、丙三級,其中乙、丙兩級均屬次品,若生產中出現(xiàn)乙級品的概率為0.03,丙級品的概率為0.01,則對成品抽查一件抽得正品的概率為(     )
A.0.99 B.0.98 C.0.97  D.0.96

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某小組有3名男生和2名女生,從中任選2名同學參加演講比賽,那么互斥不對立的兩個事件是
A.恰有1名男生與恰有2名女生
B.至少有1名男生與全是男生
C.至少有1名男生與至少有1名女生
D.至少有1名男生與全是女生

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一件產品要經過2道獨立的加工工序,第一道工序的次品率為a,第二道工序的次品率為b,則產品的正品率為(     ):
A. 1-a-bB.1-a·b
C.(1-a)·(1-b)D.1-(1-a)·(1-b)

查看答案和解析>>

同步練習冊答案