函數(shù)f(x)=logax( 2≤x≤π)的最大值比最小值大1,則a的值(  )
A、
π
2
B、
2
π
C、
π
2
2
π
D、無法確定
分析:先看單調(diào)性,再研究最值,當a>1時,函數(shù)是增函數(shù),則2對應最小值,π對應最小值,再按條件求解;當0<a<1時,函數(shù)是減函數(shù),則π對應最小值,2對應最小值,再按條件求解;兩個結(jié)果取并集.
解答:解:當a>1時,函數(shù)是增函數(shù),
根據(jù)題意有:logaπ-loga2=1
即:loga
π
2
=1
∴a=
π
2

當0<a<1時,函數(shù)是減函數(shù),
根據(jù)題意有:loga2-logaπ=1
即:loga
2
π
=1題
∴a=
2
π

綜上:a的值為:
π
2
2
π

故選C
點評:本題主要考查對數(shù)函數(shù)的最值,在研究最值時,一定要研究函數(shù)的單調(diào)性,還要注意函數(shù)的定義域.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

5、設函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實數(shù)a的范圍是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設有三個命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當它們構(gòu)成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•茂名二模)設函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案