精英家教網 > 高中數學 > 題目詳情

(本小題16分)

已知函數

   (I)試用含的代數式表示;

   (Ⅱ)求的單調區(qū)間;

 (Ⅲ)令,設函數處取得極值,記點,證明:線段與曲線存在異于、的公共點.

(本小題16分)

已知函數

   (I)試用含的代數式表示

   (Ⅱ)求的單調區(qū)間;w.w.w.k.s.5.u.c.o.m                 

   (Ⅲ)令,設函數處取得極值,記點,證明:線段與曲線存在異于、的公共點;

解法一:

依題意,得 ,--------------------------------------------------2分

.------------------------------------------------------------------------------------4分

 ,

,

,則,--------------------------------------------------6分

時, ,

變化時, 的變化如下表:

(,)

(,)

(, )

+

-

+

單調遞增

單調遞減

單調遞增

由此得,函數的單調增區(qū)間為(,)和(, ),單調減區(qū)間為(,).

時, .此時恒成立,且僅在,故函數的單調增區(qū)間為.

時, ,同理可得函數的單調增區(qū)間為,單調減區(qū)間為.--------------------------------------------------9分

綜上:當時,函數的單調增區(qū)間為(,)和(, ),單調減區(qū)間為(,);當時,函數的單調增區(qū)間為; 當時,函數的單調增區(qū)間為,單調減區(qū)間為.-------------------------------10分

(Ⅲ)當時,得

,得,.

由(Ⅱ)得單調區(qū)間為,單調減區(qū)間為,所以函數,處取得極值;

,.------------------------------------------------------------12分

所以直線的方程為

,得-------------------------------14分

.

易得,.而的圖像在內是一條連續(xù)不斷的曲線,故內存在零點,這表明線段與曲線存在異于、的公共點. --------------------------------------------------------------------------------------------------------------16分

解法二:

(I)同解法一

(II)同解法一

(Ⅲ) 當時,得,由,得,.

由(Ⅱ)得單調區(qū)間為,單調減區(qū)間為,所以函數,處取得極值;

,.------------------------------------------------------------12分

所以直線的方程為

,得-------------------------------14分

解得:, , .

, , .

所以線段與曲線存在異于、的公共點.--------------16分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本小題16分)

已知函數).

(1)求函數的值域;

(2)①判斷函數的奇偶性;②用定義判斷函數的單調性;

(3)解不等式

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題16分)

已知函數).

(1)求函數的值域;

(2)①判斷函數的奇偶性;②用定義判斷函數的單調性;

(3)解不等式

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題16分)

已知是定義在上的偶函數,且時,

(1)求;

(2)求函數的表達式;

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省揚州市高三第四次模擬考試數學試題 題型:解答題

(本小題16分)

已知拋物線的頂點在坐標原點,對稱軸為軸,焦點在直線上,直線與拋物線相交于兩點,為拋物線上一動點(不同于),直線分別交該拋物線的準線于點。

(1)求拋物線方程;

(2)求證:以為直徑的圓經過焦點,且當為拋物線的頂點時,圓與直線相切。

 

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省高一第一學期期末測試數學試卷 題型:解答題

(本小題16分)

已知△OAB的頂點坐標為,,, 點P的橫坐標為14,且,點是邊上一點,且.

(1)求實數的值與點的坐標;

(2)求點的坐標;

(3)若為線段上的一個動點,試求的取值范圍.

 

查看答案和解析>>

同步練習冊答案