在直角坐標(biāo)系上取兩個(gè)定點(diǎn),再取兩個(gè)動(dòng)點(diǎn) ,且.
(Ⅰ)求直線與交點(diǎn)的軌跡的方程;
(Ⅱ)已知點(diǎn)()是軌跡上的定點(diǎn),是軌跡上的兩個(gè)動(dòng)點(diǎn),如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個(gè)定值,若不是,說明理由.
(Ⅰ)依題意知直線的方程為: ①……………2分
直線的方程為: ②…………………3分
設(shè)是直線與交點(diǎn),①×②得
由 整理得 …………………4分
∵不與原點(diǎn)重合 ∴點(diǎn)不在軌跡M上…………………5分
∴軌跡M的方程為()…………………6分
(Ⅱ)∵點(diǎn)()在軌跡M上 ∴解得,即點(diǎn)A的坐標(biāo)為
設(shè),則直線AE方程為:,代入并整理得
…………………9分
設(shè),, ∵點(diǎn)在軌跡M上,
∴ ③, ④………………11分
又得,將③、④式中的代換成,可得
,…………………………12分
∴直線EF的斜率…………………13分
∵
∴
即直線EF的斜率為定值,其值為
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)中,已知圓經(jīng)過點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以坐標(biāo)原點(diǎn)為極點(diǎn),橫軸的正半軸為極軸的極坐標(biāo)系下,有曲線C:,過極點(diǎn)的直線
(且是參數(shù))交曲線C于兩點(diǎn)0,A,令OA的中點(diǎn)為M.
(1)求點(diǎn)M在此極坐標(biāo)下的軌跡方程(極坐標(biāo)形式).
(2)當(dāng)時(shí),求M點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長度單位相同.圓的參數(shù)方程為(為參數(shù)),點(diǎn)的極坐標(biāo)為. (1)化圓的參數(shù)方程為極坐標(biāo)方程;
(2)若點(diǎn)是圓上的任意一點(diǎn), 求,兩點(diǎn)間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為,圓的參數(shù)方程為
(其中為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
((本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)是直角坐標(biāo)系的原點(diǎn),極軸與直角坐標(biāo)系中軸的正半軸重合.曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程是.
(Ⅰ)求曲線和的直角坐標(biāo)方程并畫出草圖;
(Ⅱ)設(shè)曲線和相交于,兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中.曲線的極坐標(biāo)方程為.
(1)分別把曲線化成普通方程和直角坐標(biāo)方程;并說明它們分別表示什么曲線.
(2)在曲線上求一點(diǎn),使點(diǎn)到曲線的距離最小,并求出最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,AC切⊙O于D,AO的延長線交⊙O于B,且AB⊥BC,若AD∶AC=1∶2,則AO∶OB=
A.2∶1 | B.1∶1 |
C.1∶2 | D.1∶1.5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com