已知曲線C的極坐標(biāo)方程為ρ=4cos θ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P,Q兩點(diǎn),以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線C1:(t為參數(shù)),C2:(θ為參數(shù)).
(1)當(dāng)α=時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(2)過坐標(biāo)原點(diǎn)O作C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中, O為極點(diǎn), 半徑為2的圓C的圓心的極坐標(biāo)為.
(1)求圓C的極坐標(biāo)方程;
(2)在以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立的直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),直線與圓C相交于A,B兩點(diǎn),已知定點(diǎn),求|MA|·|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C:ρsin(θ+)=,曲線P:ρ2-4ρcosθ+3=0,
(1)求曲線C,P的直角坐標(biāo)方程.
(2)設(shè)曲線C和曲線P的交點(diǎn)為A,B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù),)
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(2)若直線經(jīng)過點(diǎn),求直線被曲線C截得的線段AB的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),若直線與圓相切,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線C1上的點(diǎn)M(1,)對應(yīng)的參數(shù)j=,曲線C2過點(diǎn)D(1,).
(I)求曲線C1,C2的直角坐標(biāo)方程;
(II)若點(diǎn)A(r1,q),B(r2,q+)在曲線C1上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系.x0y中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線 C的極坐標(biāo)方程為:
(I)求曲線l的直角坐標(biāo)方程;
(II)若直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線C相交于A、B兩點(diǎn)求|AB|的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com