已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù),) 
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(2)若直線經(jīng)過點(diǎn),求直線被曲線C截得的線段AB的長(zhǎng)

(1),曲線C是頂點(diǎn)為O(0,0),焦點(diǎn)為F(1,0)的拋物線;(2)8

解析試題分析:本題主要考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,直線的參數(shù)方程,韋達(dá)定理等基礎(chǔ)知識(shí),考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力 第一問,利用極坐標(biāo)與直角坐標(biāo)的互化公式,進(jìn)行互化,并寫出圖形形狀;第二問,由直線的參數(shù)方程得出直線過,若還過,則,則直線的方程可進(jìn)行轉(zhuǎn)化,由于直線與曲線C相交,所以兩方程聯(lián)立,得到關(guān)于t的方程,設(shè)出A,B點(diǎn)對(duì)應(yīng)的參數(shù),所以,利用兩根之和,兩根之積進(jìn)行轉(zhuǎn)化求解 
試題解析:(1)曲線C的直角坐標(biāo)方程為,故曲線C是頂點(diǎn)為O(0,0),焦點(diǎn)為F(1,0)的拋物線;  5分
(2)直線的參數(shù)方程為( t為參數(shù),0≤) 故l經(jīng)過點(diǎn)(0,1);若直線經(jīng)過點(diǎn)(1,0),則
直線的參數(shù)方程為(t為參數(shù))
代入,得
設(shè)A、B對(duì)應(yīng)的參數(shù)分別為,則
="8"           10分
考點(diǎn):1極坐標(biāo)與直角坐標(biāo)的互化;2直線的參數(shù)方程;3直線與曲線的位置關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,圓的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.求:
(1)圓的直角坐標(biāo)方程;
(2)圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為(t為參數(shù)),P為C1上的動(dòng)點(diǎn),Q為線段OP的中點(diǎn).
(1)求點(diǎn)Q的軌跡C2的方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸(兩坐標(biāo)系取相同的長(zhǎng)度單位)的極坐標(biāo)系中,N為曲線p=2sinθ上的動(dòng)點(diǎn),M為C2與x軸的交點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從原點(diǎn)O引直線交直線2x+4y-1=0于點(diǎn)M,P為OM上一點(diǎn),已知OP·OM=1,求P點(diǎn)所在曲線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C的極坐標(biāo)方程為ρ=4cos θ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P,Q兩點(diǎn),以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l經(jīng)過點(diǎn),傾斜角α=,圓C的極坐標(biāo)方程為.
(1)寫出直線l的參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(2)設(shè)l與圓C相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)為曲線上任一點(diǎn),求的最小值,并求相應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系內(nèi),已知曲線的方程為,以極點(diǎn)為原點(diǎn),極軸方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/f/kalf5.png" style="vertical-align:middle;" />正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).
(1) 求曲線的直角坐標(biāo)方程以及曲線的普通方程;
(2) 設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),過點(diǎn)作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線C1和C2的參數(shù)方程分別為(t為參數(shù)),求曲線C1和C2的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案