【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點.

(Ⅰ)求曲線的直角坐標(biāo)方程及直線恒過的定點的坐標(biāo);

(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.

【答案】(Ⅰ); (Ⅱ).

【解析】試題分析:(1)利用三種方程的轉(zhuǎn)化方法,求出普通方程,即可求曲線C的普通方程及直線l恒過的定點A的坐標(biāo);

(2)在(1)的條件下,若,利用參數(shù)的幾何意義,求出,即可求直線L的普通方程.

試題解析:

)因為x=ρcosθ,y=ρsinθ,所以C: ,直線l恒過定點為.

)把直線l的方程代入曲線C的直角坐標(biāo)方程中得: .

t的幾何意義知, ,因為點A在橢圓內(nèi),這個方程必有兩個實根,

所以,因為,即,

所以,因為,所以,

因此,直線l的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上為增函數(shù).

(1)求實數(shù)的取值范圍;

(2)若函數(shù)的圖象有三個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中, 是拋物線的焦點, 是拋物線上位于第一象限內(nèi)的任意一點,過三點的圓的圓心為,點到拋物線的準(zhǔn)線的距離為

(1)求拋物線的方程;

(2)若點的橫坐標(biāo)為,直線與拋物線有兩個不同的交點 與圓有兩個不同的交點,求當(dāng)時, 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y (nZ)的圖像與兩坐標(biāo)軸都無公共點,且其圖像關(guān)于y軸對稱n的值,并畫出函數(shù)圖像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】線段AB的兩端在直二面角αlβ的兩個面內(nèi),并與這兩個面都成30°角,則異面直線ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的8道題.規(guī)定每次考試都從備選的10道題中隨機抽出4道題進行測試,只有選中的4個題目均答對才能入選;
(Ⅰ)求甲恰有2個題目答對的概率及甲答對題目數(shù)的數(shù)學(xué)期望與方差。
(Ⅱ)求乙答對的題目數(shù)X的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國電子商務(wù)蓬勃發(fā). 2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達(dá)516億元人民幣,與此同時,相關(guān)管理部門推出了針對該網(wǎng)購平臺的商品和服務(wù)的評價系統(tǒng). 評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)滿意的交易為80次.

(Ⅰ) 根據(jù)已知條件完成下面列聯(lián)表,并回答能有99%的把握認(rèn)為“網(wǎng)購者對商品滿意與服務(wù)滿意之間有關(guān)系”?

對服務(wù)滿意

對服務(wù)不滿意

合計

對商品滿意

80

對商品不滿意

合計

200

(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設(shè)對商品和服務(wù)滿意的次數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望.

附:(其中為樣本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運

會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔(dān)心賽事費用超支而相繼退出。某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50歲

80

年齡大于50歲

10

合計

70

100

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過5%的前提下認(rèn)為不同年齡與支持申辦奧運無關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)在區(qū)間內(nèi)單調(diào)遞增;②函數(shù)在區(qū)間內(nèi)單調(diào)遞減;③函數(shù)在區(qū)間內(nèi)單調(diào)遞增;④當(dāng)時,函數(shù)有極小值;⑤當(dāng)時,函數(shù)有極大值.則上述判斷中正確的是(  )

A. ①② B.

C. ②③ D. ③④⑤

查看答案和解析>>

同步練習(xí)冊答案