分析 曲線C1的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,展開可得:$\frac{\sqrt{2}}{2}(ρsinθ-ρcosθ)$=$\sqrt{2}$,把$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,代入即可得出直角坐標(biāo)方程.曲線C2在直角坐標(biāo)系中的參數(shù)方程為$\left\{\begin{array}{l}x=2cost\\ y=2+2sint\end{array}$(參數(shù)t∈[-$\frac{π}{2}$,$\frac{π}{2}}$]),利用cos2t+sin2t=1即可得出直角坐標(biāo)方程.
解答 解:曲線C1的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,展開可得:$\frac{\sqrt{2}}{2}(ρsinθ-ρcosθ)$=$\sqrt{2}$,
可得直角坐標(biāo)方程:y=x+2;
曲線C2在直角坐標(biāo)系中的參數(shù)方程為$\left\{\begin{array}{l}x=2cost\\ y=2+2sint\end{array}$(參數(shù)t∈[-$\frac{π}{2}$,$\frac{π}{2}}$]),
化為x2+(y-2)2=4,可得圓心C2(0,2),半徑r=2.
由于圓心(0,2)滿足直線方程,因此:C1被C2截得的弦長為2r=4.
故答案分別為:y=x+2;為x2+(y-2)2=4;4.
點(diǎn)評(píng) 本題考查了直角坐標(biāo)與極坐標(biāo)的互化、參數(shù)方程化為普通方程、直線與圓相交弦長問題,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com