如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點.
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求點A到平面PCD的距離.

(1)證明:在中,中點,.又側(cè)面底面,平面平面平面.平面;(2);(3).

解析試題分析:(1)由題意可根據(jù)面面垂直的性質(zhì)定理來證,已知側(cè)面底面,并且相交于,而為等腰直角三角形,中點,所以,即垂直于兩個垂直平面的交線,且平面,所以平面;(2)連結(jié),由題意可知是異面直線所成的角,并且三角形是直角三角形,,,由余弦定理得;(3)利用體積相等法可得解,設(shè)點到平面的距離,即由,得, 而在中,,所以,因此,又,,從而可得解.
(1)證明:在中,,中點,.    2分
又側(cè)面底面,平面平面,平面.
平面.      4分
(2)解:連結(jié),在直角梯形中,,,有.所以四邊形平行四邊形,.由(1)知,為銳角,所以是異面直線所成的角.    7分
,在中,..在中,
.在中,..
所以異面直線所成的角的余弦值為.    9分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱柱中,已知平面平面,.
(1)求證:
(2)若為棱上的一點,且平面,求線段的長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示的多面體中, 是菱形,是矩形,,

(1)求證:平;
(2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面
底面,且,、分別為的中點.

(1)求證:平面;   
(2)求證:面平面
(3)在線段上是否存在點,使得二面角的余弦值為?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知三棱柱的側(cè)棱與底面垂直,且
,,,點、分別為、、的中點.
(1)求證:平面
(2)求證:;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,空間中有一直角三角形,為直角,,,現(xiàn)以其中一直角邊為軸,按逆時針方向旋轉(zhuǎn)后,將點所在的位置記為,再按逆時針方向繼續(xù)旋轉(zhuǎn)后,點所在的位置記為.
(1)連接,取的中點為,求證:面;
(2)求與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2011•山東)如圖,在四棱臺ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:AA1⊥BD;
(2)證明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是,D是AC的中點.
 
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大;
(3)求直線AB1與平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓錐母線長為6,底面圓半徑長為4,點是母線的中點,是底面圓的直徑,底面半徑與母線所成的角的大小等于

(1)當時,求異面直線所成的角;
(2)當三棱錐的體積最大時,求的值.

查看答案和解析>>

同步練習冊答案