18.已知$\overrightarrow b=(2,s),\overrightarrow c=(1,-1),\overrightarrow m=(s,1)$,若$\overrightarrow b∥\overrightarrow c$,則$\overrightarrow m$與$\overrightarrow c$的夾角的余弦值為-$\frac{3\sqrt{10}}{10}$.

分析 由已知結(jié)合向量共線的坐標(biāo)運(yùn)算求得s,然后由數(shù)量積求夾角得答案.

解答 解:∵$\overrightarrow=(2,s),\overrightarrow{c}=(1,-1)$,又$\overrightarrow b∥\overrightarrow c$,
∴-2-s=0,得s=-2,
∴$\overrightarrow{m}=(-2,1)$,
則|$\overrightarrow{m}$|=$\sqrt{5}$,|$\overrightarrow{c}$|=$\sqrt{2}$,$\overrightarrow{m}•\overrightarrow{c}=1×(-2)-1×1=-3$,
∴cos<$\overrightarrow{m},\overrightarrow{c}$>=$\frac{\overrightarrow{m}•\overrightarrow{c}}{|\overrightarrow{m}||\overrightarrow{c}|}=\frac{-3}{\sqrt{5}×\sqrt{2}}=-\frac{3\sqrt{10}}{10}$.
故答案為:$-\frac{{3\sqrt{10}}}{10}$.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查向量共線的坐標(biāo)表示,考查由數(shù)量積求向量的夾角,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x-4|+|x-a|.
(I)當(dāng)a=2時(shí),求函數(shù)f(x)>10的解集;
(II)若關(guān)于x的不等式f(x)≥1的解集是R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,已知在長(zhǎng)方體ABCD-A1B1C1D1中,AD=A1A=$\frac{1}{2}$AB=2,點(diǎn)E是棱AB上一點(diǎn),且$\frac{AE}{EB}$=λ.
(1)證明:D1E⊥A1D;
(2)若二面角D1-EC-D的余弦值為$\frac{\sqrt{6}}{3}$,求CE與平面D1ED所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,若$(\;{a^2}+{c^2}-{b^2})tanB=\sqrt{3}$ac,則角B=( 。
A.30°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知$y={log_2}({x^2}-2x+17)$的值域?yàn)閇m,+∞),當(dāng)正數(shù)a,b滿足$\frac{2}{3a+b}+\frac{1}{a+2b}=m$時(shí),則7a+4b的最小值為( 。
A.$\frac{9}{4}$B.5C.$\frac{{5+2\sqrt{2}}}{4}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列幾何體是組合體的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某校高一年級(jí)舉行了一次數(shù)學(xué)競(jìng)賽,為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)估計(jì)本次競(jìng)賽學(xué)生成績(jī)的中位數(shù)和平均分;
(3)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知直線x=my+1過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)F且與拋物線相交于兩點(diǎn)M(x1,y1),N(x2,y2),自M,N向準(zhǔn)線L作垂線,垂足分別為M1,N1
(Ⅰ)求拋物線C的方程;
(Ⅱ)證明:無(wú)論m取何實(shí)數(shù)時(shí),y1y2,x1x2都是定值;
(Ⅲ)記△FMM1,△FM1N1,△FNN1的面積分別為S1,S2,S3,試判斷$S_2^2=4{S_1}{S_3}$是否成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.對(duì)兩個(gè)變量y和x進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2),…,(xn,yn),則下列說(shuō)法中不正確的是( 。
A.樣本方差反映了所有樣本數(shù)據(jù)與樣本平均值的偏離程度
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來(lái)刻畫回歸效果,R2的值越小,說(shuō)明模型的擬合效果越好
D.在回歸分析中,代表了數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異的是殘差平方和

查看答案和解析>>

同步練習(xí)冊(cè)答案