14.設函數(shù) f(x)=lnx+$\frac{m}{x}$,m∈R
(1)當m=1時,求f(x)的極值;
(2)若對任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求 m的取值范圍.

分析 (1)利用導數(shù)求函數(shù)極值;(2)$\frac{f(b)-f(a)}{b-a}$<1恒成立.等價于f(b)-b<f(a)-a恒成立.等價于h(x)=f(x)-x)在(0,+∞)上單調遞減.

解答 解:(1)由題設,當m=1時,f(x)=ln x+$\frac{1}{x}$(x>0),
則$f'(x)=\frac{x-1}{x^2}$,令f′(x)=0,則x=1
∴當x∈(0,1),f′(x)<0,f(x)在(0,1)上單調遞減,
當x∈(1,+∞),f′(x)>0,f(x)在(1,+∞)上單調遞增,
∴x=1時,f(x)取得極小值f(1)=ln 1+1=1,
∴f(x)的極小值為1.
(2)對任意的b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立.
等價于f(b)-b<f(a)-a恒成立.(*)
設h(x)=f(x)-x=ln x+$\frac{m}{x}$-x(x>0),
∴(*)等價于h(x)在(0,+∞)上單調遞減,
由h′(x)=$\frac{1}{x}$-$\frac{m}{x2}$-1≤0在(0,+∞)上恒成立,
得m≥(-x2+x )(x>0)恒成立,等價于m≥(-x2+x )max(x>0),
∵當x=$\frac{1}{2}$時,y=-x2+x (x>0)有最大值為$\frac{1}{4}$
∴m≥$\frac{1}{4}$
∴m的取值范圍為:[$\frac{1}{4},+∞)$

點評 本題考查了利用導數(shù)求函數(shù)極值,同時考查了轉化思想,把不等式恒成立問題轉化為函數(shù)的單調性問題,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.設物體以速度v(t)=3t2+t(單位v:m/s,t:s)做直線運動,則它在0~4s內所走的路程s為( 。
A.70 mB.72 mC.75 mD.80 m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知實數(shù)a=ln(lnπ),b=lnπ,c=2lnπ,則a,b,c的大小關系為( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知點F是拋物線C:y2=2px(p>0)的焦點,若點M(x0,1)在C上,且|MF|=$\frac{{5{x_0}}}{4}$.
(1)求p的值;
(2)若直線l經過點Q(3,-1)且與C交于A,B(異于M)兩點,證明:直線AM與直線BM的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設y=f(x)是定義在R上的函數(shù),如果存在A點,對函數(shù)y=f(x)的圖象上任意點P,P關于點A的對稱點Q也在函數(shù)y=f(x)的圖象上,則稱函數(shù)y=f(x)關于點A對稱,A稱為函數(shù)f(x)的一個對稱點,對于定義在R上的函數(shù)f(x),可以證明點A(a,b)是f(x)圖象的一個對稱點的充要條件是f(a-x)+f(a+x)=2b,x∈R.
(1)求函數(shù)f(x)=x3+3x2圖象的一個對稱點;
(2)函數(shù)g(x)=ax2+bx+c(a≠0)的圖象是否有對稱點?若存在則求之,否則說明理由;
(3)函數(shù)g(x)=$\frac{{{e^x}+3}}{{{e^x}+1}}$的圖象是否有對稱點?若存在則求之,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}-\frac{1}{2}{x^2}-2x({x≤0})\\{(\frac{1}{2})^x}+1({x>0})\end{array}$.
(1)畫出函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調區(qū)間和值域;
(2)根據(jù)圖象求不等式f(x)≥$\frac{3}{2}$的解集(寫答案即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.假設要考察某公司生產的500克袋裝牛奶的三聚青氨是否超標,現(xiàn)從800袋牛奶中抽取60袋進行檢驗,利用隨機數(shù)表抽取樣本時,先將800袋牛奶按000,001,…,799進行編號,如果從隨機數(shù)表第7行第8列的數(shù)開始向右讀,則得到的第5個的樣本個體的編號是047
(下面摘取了隨機數(shù)表第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知全集U=R,集合A={x|0<2x+4<10},B={x|x<-4,或x>2},C={x|x2-4ax+3a2<0,a<0},
(1)求A∪B;
(2)若∁U(A∪B)⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出下列四個命題:
①“三個球全部放入兩個盒子,其中必有一個盒子有一個以上的球”是必然事件
②“當x為某一實數(shù)時可使x2<0”是不可能事件
③“明天安順要下雨”是必然事件
④“從100個燈泡中取出5個,5個都是次品”是隨機事件.
其中正確命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案