分析 先化簡f(x)=-sin(2x-$\frac{π}{3}$),再利用正弦函數(shù)的圖象與性質(zhì)進(jìn)行解答.
解答 解:f(x)=-sin(2x-$\frac{π}{3}$).
(1)f(x)的最小正周期為T=$\frac{2π}{2}=π$.
(2)當(dāng)2x-$\frac{π}{3}$=$\frac{π}{2}+2kπ$即x=$\frac{5π}{12}+kπ$時,f(x)取得最小值為-1,
2x-$\frac{π}{3}$=-$\frac{π}{2}+2kπ$即x=-$\frac{π}{12}+kπ$時,f(x)取得最大值為1.
(3)令$\frac{π}{2}+2kπ$≤2x-$\frac{π}{3}$≤$\frac{3π}{2}+2kπ$,解得$\frac{5π}{12}+kπ$≤x≤$\frac{11π}{12}+kπ$,
∴f(x)的單調(diào)增區(qū)間是[$\frac{5π}{12}+kπ$,$\frac{11π}{12}+kπ$],k∈Z.
(4)設(shè)f(x)與g(x)的圖象關(guān)于y軸對稱,
則g(x)=f(-x)=sin(2x+$\frac{π}{3}$)=-sin(2x+$\frac{π}{3}$+π)=-sin[2(x+$\frac{5π}{6}$)-$\frac{π}{3}$].
∴將f(x)的圖象沿x軸向左平移$\frac{5π}{6}$個單位即可得到關(guān)于y軸對稱的圖象.
(5)∵f(x)的最大值是1,最小值是-1,
∴m≤-1,n≥1.
(6)∵f(x1)≤f(x)≤f(x2),
∴f(x1)=fmin(x)=-1,f(x2)=fmax(x)=1.
|x1-x2|的最小值為$\frac{T}{2}$=$\frac{π}{2}$.
點(diǎn)評 本題考查了正弦函數(shù)的圖象與性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 1 | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{15}$ | B. | $\frac{\sqrt{17}}{2}$ | C. | $\sqrt{17}$ | D. | $\frac{\sqrt{15}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 31 | B. | 5 | C. | $\frac{31}{16}$ | D. | $\frac{15}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x軸 | B. | y軸 | C. | 直線x=$\frac{π}{4}$ | D. | 直線x=-$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,-1) | C. | (0,$\frac{1}{2}$) | D. | (0,-$\frac{1}{2}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com