12.若定義在R上的函數(shù)f(x)滿足f′(x)-2f(x)-4>0,f(0)=-1,則不等式f(x)>e2x-2(其中e是自然對數(shù)的底數(shù))的解集為( 。
A.(0,+∞)B.(-∞,-1)∪(0,+∞)C.(-∞,0)∪(0,+∞)D.(-1,+∞)

分析 由已知條件構(gòu)造輔助函數(shù)F(x)=$\frac{f(x)+2}{{e}^{2x}}$,求導(dǎo),根據(jù)已知求得函數(shù)的單調(diào)區(qū)間,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可f(x)>e2x-2的解集.

解答 解:由f(x)>e2x-2,得f(x)+2>e2x,得$\frac{f(x)+2}{{e}^{2x}}$>1,令F(x)=$\frac{f(x)+2}{{e}^{2x}}$,
則F′(x)=$\frac{f′(x){e}^{2x}-2[f(x)+2]{e}^{2x}}{({e}^{2x})^{2}}$=$\frac{f′(x)-2f(x)-4}{{e}^{2x}}$,
∵f′(x)-2f(x)-4>0,
∴F′(x)>0,
∴F(x)=$\frac{f(x)+2}{{e}^{2x}}$在R上單調(diào)遞增,
f(0)=-1,F(xiàn)(0)=1,
∴原不等式等價于F(x)>F(0),
∴x>0,故不等式f(x)>e2x-2的解集為(0,+∞),
故答案選:A.

點評 本題考查函數(shù)的導(dǎo)數(shù)與單調(diào)性的結(jié)合,根據(jù)已知條件構(gòu)造輔助函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列對應(yīng)是集合A到集合B上的映射的是(  )
A.A=N+,B=N+,f:x→|x-3|B.A=N+,B={-1,1,-2},f:x→(-1)x
C.A=Z,B=Q,f:x→$\frac{3}{x}$D.A=N+,B=R,f:x→x的平方根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知x>0,函數(shù)$f(x)=lnx-\frac{ax}{x+1}$.
(1)若函數(shù)f(x)在其定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若f(x)有兩個極值點x1,x2,求證:$f({x_1})+f({x_2})≥\frac{x+1}{x}•[{f(x)-x+1}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極值,則實數(shù)b的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)在x=c處的導(dǎo)數(shù)存在,則“c為函數(shù)f(x)的極值點”是“f′(c)=0”成立的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)列{an}中,滿足an+2=2an+1-an,且a1,a4031是函數(shù)f(x)=$\frac{1}{3}$x3-4x2+6x-1的極值點,則log2a2016的值是(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{m}{2}{x^2}-x-lnx$.
(Ⅰ)求曲線C:y=f(x)在x=1處的切線l的方程;
(Ⅱ)若函數(shù)f(x)在定義域內(nèi)是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)當(dāng)m>-1時,(Ⅰ)中的直線l與曲線C:y=f(x)有且只有一個公共點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)曲線y=xn+1(n∈N*)在點(1,1)處的切線與y軸的交點坐標(biāo)為(0,-n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,經(jīng)過右焦點F2的直線與雙曲線C的右支交于P,Q兩點,且|PF2|=2|F2Q|,PQ⊥F1Q,則雙曲線C的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{10}}{2}$D.$\frac{\sqrt{17}}{3}$

查看答案和解析>>

同步練習(xí)冊答案