12.已知偶函數(shù)f(x)=ln|x|,則滿足f(2x-1)<f($\frac{1}{3}$)的取值范圍是( 。
A.($\frac{2}{3}$,1)B.($\frac{1}{2}$,$\frac{2}{3}$)C.(0,$\frac{2}{3}$)D.(-∞,$\frac{2}{3}$)

分析 由偶函數(shù)性質(zhì),結(jié)合f(x)在(0,+∞)上的單調(diào)性把該不等式轉(zhuǎn)化為具體不等式,解出即可.

解答 解:∵偶函數(shù)f(x)=ln|x|,
∴f(x)在(0,+∞)上單調(diào)遞增,
∵f(2x-1)<f($\frac{1}{3}$),
∴0<|2x-1|<$\frac{1}{3}$,
解得$\frac{1}{2}$<x<$\frac{2}{3}$,
∴x的取值范圍為($\frac{1}{2}$,$\frac{2}{3}$).
故選:B.

點評 本題考查函數(shù)的奇偶性、單調(diào)性的綜合,考查抽象不等式的求解,考查轉(zhuǎn)化思想,解決本題的關(guān)鍵是利用函數(shù)的性質(zhì)把抽象不等式具體化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知菱形邊長為$\sqrt{2}$,∠DAB=45°,若E為CD的中點,則$\overrightarrow{AD}$•$\overrightarrow{AE}$=$\frac{\sqrt{2}}{2}$+2,$\overrightarrow{AE}$•$\overrightarrow{AB}$=1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)y=x+2$\sqrt{1-x}$值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.從A、B、C、D、E等5名短跑運動員中,任選4名排在標(biāo)號分別為1、2、3、4的跑道上,求運動員E排在1、2跑道上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax+$\frac{x}$(a,b為常數(shù)),且f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求a,b的值;
(2)求函數(shù)f(x)在[$\frac{1}{4}$,2]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點M(1,4)到直線1:mx十y-1=0的距離等于1,則實數(shù)m等于( 。
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知x2+y2=4,求x+2y的最大值,并求取得最值時的x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=log2$\frac{1+ax}{x-1}$(a為常數(shù))是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若當(dāng)x∈(1,3]時,f(x)>m恒成立.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的奇函數(shù)f(x)滿足:對任意的x1,x2∈[0,+∞)( x1≠x2),有(x2-x1)(f(x2)-f(x1))>0,則(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

同步練習(xí)冊答案