6.已知函數(shù)f(x)=log2$\frac{1+ax}{x-1}$(a為常數(shù))是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若當(dāng)x∈(1,3]時,f(x)>m恒成立.求實數(shù)m的取值范圍.

分析 (Ⅰ)根據(jù)奇函數(shù)的性質(zhì)即可求出a的值,
(Ⅱ)先判讀函數(shù)f(x)的單調(diào)性,再求出最值即可得到m的取值范圍.

解答 解:(Ⅰ)f(x)=log2$\frac{1+ax}{x-1}$是奇函數(shù),
∴f(-x)=-f(x),
∴l(xiāng)og2$\frac{1-ax}{-x-1}$=-log2$\frac{1+ax}{x-1}$,即log2$\frac{ax-1}{x+1}$=$\frac{x-1}{1+ax}$,
∴a=1,
(Ⅱ)由題意:m<log2$\frac{x+1}{x-1}$在x∈(1,3]時恒成立.
設(shè)1<x1<x2≤3,
∴g(x1)-g(x2)=$\frac{{x}_{1}+1}{{x}_{1}-1}$-$\frac{{x}_{2}+1}{{x}_{2}-1}$=$\frac{2({x}_{2}-{x}_{1})}{({x}_{1}-1)({x}_{2}-1)}$,
∵x2-x1>0,x1-1>0,x2-1>0,
∴g(x1)-g(x2)>0,
∴g(x)在(1,3]上為減函數(shù),
∴f(x)=log2g(x)在(1,3]上為減函數(shù)上為減函數(shù).
當(dāng)x=3時,f(x)有最小值,即f(x)min=1,
故m<1.

點評 本題考查了函數(shù)的奇偶單調(diào)性以及參數(shù)的取值范圍,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.“x1>3且x2>3”是“x1+x2>6且x1x2>9”的充要條件嗎?若是,請說明理由;若不是,請給出“x1>3且x2>3”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知偶函數(shù)f(x)=ln|x|,則滿足f(2x-1)<f($\frac{1}{3}$)的取值范圍是(  )
A.($\frac{2}{3}$,1)B.($\frac{1}{2}$,$\frac{2}{3}$)C.(0,$\frac{2}{3}$)D.(-∞,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,已知向量$\overrightarrow{a}$=(2sinB,1),$\overrightarrow$=(cosA,sin(A+C)),若$\overrightarrow{a}$⊥$\overrightarrow$.
(I)求角A;
(Ⅱ)若BC=$\sqrt{21}$,△ABC的面積是$\sqrt{3}$,若AB<AC,求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖給出的是計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{100}$的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≥49?B.i≥50?C.i≥51?D.i≥100?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z滿足z(1-i)=i,則復(fù)數(shù)z對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知p:($\frac{x-4}{3}$)2≤4,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若$\overrightarrow{a}$=(2+λ,1),$\overrightarrow$=(3,λ),若<$\overrightarrow{a}$,$\overrightarrow$>為鈍角,則實數(shù)λ的取值范圍是$λ<-\frac{3}{2}$且λ≠-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在四邊形ABCD中,$\overrightarrow{AB}•\overrightarrow{BC}$=0,且$\overrightarrow{AB}=\overrightarrow{DC}$,則四邊形ABCD是( 。
A.平行四邊形B.菱形C.矩形D.正方形

查看答案和解析>>

同步練習(xí)冊答案