4.已知f(x)=$\sqrt{4-{x}^{2}}$,g(x)=|x-2|,則下列結(jié)論正確的是( 。
A.h(x)=f(x)+g(x)是偶函數(shù)B.h(x)=f(x)•g(x)是奇函數(shù)
C.h(x)=$\frac{g(x)•f(x)}{2-x}$是偶函數(shù)D.h(x)=$\frac{f(x)}{2-g(x)}$是奇函數(shù)

分析 利用函數(shù)的奇偶性的定義判斷即可.

解答 解:f(x)=$\sqrt{4-{x}^{2}}$,g(x)=|x-2|,
A.h(x)=f(x)+g(x)=$\sqrt{4-{x}^{2}}$+|x-2|=$\sqrt{4-{x}^{2}}$+2-x,x∈[-2,2].
h(-x)=$\sqrt{4-{x}^{2}}$+2+x,不滿足函數(shù)的奇偶性的定義,是非奇非偶函數(shù).
B.h(x)=f(x)•g(x)=$\sqrt{4-{x}^{2}}$|x-2|=$\sqrt{4-{x}^{2}}$(2-x),x∈[-2,2].
h(-x)=$\sqrt{4-{x}^{2}}$(2+x),不滿足奇偶性的定義.
C.h(x)=$\frac{g(x)•f(x)}{2-x}$=$\sqrt{4-{x}^{2}}$,x∈[-2,2)不滿足函數(shù)的奇偶性定義.
D.h(x)=$\frac{f(x)}{2-g(x)}$=$\frac{\sqrt{4-{x}^{2}}}{x}$,x∈[-2,0)∪(0,2],函數(shù)是奇函數(shù).
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的判斷,函數(shù)的定義域的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=x+$\frac{1}{x}$在(0,1]上是減函數(shù),在[1,+∞)上是增函數(shù),函數(shù)y=x+$\frac{2}{x}$在$(0,\sqrt{2}]$上是減函數(shù),在$[\sqrt{2},+∞)$上是增函數(shù),函數(shù)y=x+$\frac{3}{x}$在$(0,\sqrt{3}]$上是減函數(shù),在$[\sqrt{3},+∞)$上是增函數(shù),
…利用上述所提供的信息解決下列問題:若函數(shù)y=x+$\frac{3^m}{x}$(x>0)的值域是[6,+∞),則實(shí)數(shù)m的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式|2x+5|≥7成立的一個(gè)必要而不充分條件是( 。
A.x≠0B.x≤-6C.x≤-6或x≥1D.x≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=2x-x$\sqrt{4-{x}^{2}}$的最大值為( 。
A.4B.3$\sqrt{2}$C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C的圓心是直線x-y+1=0與x軸的交點(diǎn),且圓C與直線x+y+3=0相切.
(I)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過原點(diǎn)O的動(dòng)直線l與圓C交于A、B兩點(diǎn),問x軸上是否存在定點(diǎn)M(x0,0),使得當(dāng)l變動(dòng)時(shí),總有MA,MB的斜率之和為0?若存在,求出x0的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知i為虛數(shù)單位,若z(3+4i)=$\frac{5+12i}{i}$,則|z|=( 。
A.$\frac{12}{5}$B.$\frac{13}{5}$C.$\frac{5}{12}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知角α的終邊在直線y=-$\frac{4}{3}$x上,求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.命題“?x∈(-1,1),2x+a=0”是真命題,則a的取值范圍是(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長(zhǎng)為2$\sqrt{2}$,且斜率為$\sqrt{3}$的直線l過橢圓C的焦點(diǎn)及點(diǎn)(0,-2$\sqrt{3}$).
(1)求橢圓C的方程;
(2)已知一直線m過橢圓C的左焦點(diǎn)F,交橢圓于點(diǎn)P、Q,若直線m與兩坐標(biāo)軸都不垂直,點(diǎn)M在x軸上,且使MF為∠PMQ的一條角平分線,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案