15.拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸是x軸,拋物線上點(diǎn)(-5,m)到焦點(diǎn)距離是6,則拋物線的方程是( 。
A.y2=-2xB.y2=-4xC.y2=2xD.y2=-4x或y2=4x

分析 設(shè)出拋物線的標(biāo)準(zhǔn)方程,再由拋物線的定義,點(diǎn)M到焦點(diǎn)的距離等于到準(zhǔn)線的距離,即可求得拋物線方程.

解答 解:設(shè)拋物線方程為y2=-2px(p>0)
∵拋物線上一點(diǎn)(-5,m)到焦點(diǎn)距離是6,
∴$\frac{p}{2}$+5=6,
∴p=1,
∴拋物線方程為y2=-4x.
故選:B.

點(diǎn)評(píng) 本題考查拋物線的定義,拋物線的標(biāo)準(zhǔn)方程及其求法,利用定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某公司發(fā)布的2015年度財(cái)務(wù)報(bào)告顯示,該公司在去年第一季度、第二季度的營(yíng)業(yè)額每季度均比上季度下跌10%,第三季度、第四季度的營(yíng)業(yè)額每季度均比上季度上漲10%,則該公司在去年整年的營(yíng)業(yè)額變化情況是( 。
A.下跌1.99%B.上漲1.99%C.不漲也不跌D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)a=30.4,b=log40.3,c=log43,則( 。
A.a>c>bB.b>c>aC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知約束條件$\left\{\begin{array}{l}{x≥0}\\{y≤x}\\{2x+y-12≤0}\end{array}\right.$所表示的平面區(qū)域?yàn)镈,若直線y=a(x+2)與區(qū)域D有公共點(diǎn),則a的取值范圍是(0,$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知p:?x∈R,mx2+4mx-4<0為真命題.
(1)求實(shí)數(shù)m取值的集合M.
(2 ) 設(shè)不等式(x-a)(x+a-2)<0的解集為N,若x∈N是x∈M的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為$ρ=2\sqrt{3}sinθ$.
(1)寫(xiě)出曲線C的直角坐標(biāo)方程;
(2)已知直線l與x軸的交點(diǎn)為P,與曲線C的交點(diǎn)為A,B,若AB的中點(diǎn)為D,求|PD|的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.“-3≤m≤0”是“直線mx-y-2m=0與函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{-{x^2}+16},-4≤x≤0\\ 2x-2,x>0\end{array}\right.$的圖象有兩個(gè)交點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知a,b是兩個(gè)正實(shí)數(shù).且$\frac{1}{{2}^{a}}$•$\frac{1}{{2}^}$=($\frac{1}{{2}^{a}}$)b,則ab有( 。
A.最小值4B.最大值4C.最小值2D.最大值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.方程C:y2=x2+$\frac{1}{{x}^{2}}$所對(duì)應(yīng)的曲線是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案