【題目】為調(diào)查某校學(xué)生每周課外閱讀的情況,采用分層抽樣的方法,收集100位學(xué)生每周課外閱讀時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).根據(jù)這100個(gè)數(shù)據(jù),制作出學(xué)生每周課外閱讀時(shí)間的頻率分布直方圖(如圖).

(1)估計(jì)這100名學(xué)生每周課外閱讀的平均數(shù)和樣本方差(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)由頻率分布直方圖知,該校學(xué)生每周課外閱讀時(shí)間近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.

①求;

②若該校共有10000名學(xué)生,記每周課外閱讀時(shí)間在區(qū)間的人數(shù)為,試求.

參數(shù)數(shù)據(jù):,若,,.

【答案】(1),;(2)①.

【解析】

(1)直接由頻率分布直方圖結(jié)合公式求得樣本平均數(shù)和樣本方差s2;

(2)①利用正態(tài)分布的對(duì)稱性即可求得P(0.8<X≤8.3);

②由①知位于(0.8,8.3)的概率為0.8186,且ξ服從二項(xiàng)分布,由二項(xiàng)分布的期望公式得答案.

(1),

+.

(2)①由(1)知X服從正態(tài)分布N(5.8,6.16),且σ=≈2.5,

P(0.8<X≤8.3)0.8186;

②依題意ξ服從二項(xiàng)分布,即,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鮮花小鎮(zhèn)圈定一塊半徑為1百米的圓形荒地,準(zhǔn)備建成各種不同鮮花景觀帶.為了便于游客觀賞,準(zhǔn)備修建三條道路ABBC,CA,其中A,BC分別為圓上的三個(gè)進(jìn)出口,且A,B分別在圓心O的正東方向與正北方向上,C在圓心O南偏西某一方向上.在道路ACBC之間修建一條直線型水渠MN種植水生觀賞植物黃鳶尾(其中點(diǎn)M,N分別在BCCA上,且M在圓心O的正西方向上,N在圓心O的正南方向上),并在區(qū)域MNC內(nèi)種植柳葉馬鞭草.

(1)求水渠MN長(zhǎng)度的最小值;

(2)求種植柳葉馬鞭草區(qū)域MNC面積的最大值(水渠寬度忽略不計(jì)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場(chǎng)研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營(yíng)狀況,對(duì)該公司2018年連續(xù)六個(gè)月的利潤(rùn)進(jìn)行了統(tǒng)計(jì),并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(rùn)(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2019年3月份的利潤(rùn);

(2)甲公司新研制了一款產(chǎn)品,需要采購(gòu)一批新型材料,現(xiàn)有,兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個(gè)月,但新材料的不穩(wěn)定性會(huì)導(dǎo)致材料損壞的年限不相同,現(xiàn)對(duì),兩種型號(hào)的新型材料對(duì)應(yīng)的產(chǎn)品各件進(jìn)行科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計(jì)如下表:

使用壽命

材料類型

個(gè)月

個(gè)月

個(gè)月

個(gè)月

總計(jì)

如果你是甲公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款新型材料?

參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=sinωx+φ+ω0,|φ|π)的圖象與直線ycc)的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)為2,6,18,若aflg),bflg2),則以下關(guān)系式正確的是( 。

A. a+b0B. ab0C. a+b1D. ab1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|xa|+2|x+1|

1)當(dāng)a2時(shí),解不等式fx)>4

2)若不等式fx)<3x+4的解集是{x|x2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ab、c的三邊長(zhǎng),直線的方程為,圓

1)若為直角三角形,c為斜邊長(zhǎng),且直線與圓M相切.求c的值;

2)已知為坐標(biāo)原點(diǎn),點(diǎn),,,平行于ON的直線h與圓M相交于R兩點(diǎn),且,求直線h的方程:

3)若為正三角形,對(duì)于直線上任意一點(diǎn)P,在圓上總存在一點(diǎn),使得線段的長(zhǎng)度為整數(shù),求c的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知四棱錐 P ABCD 的底面是邊長(zhǎng)為 6 的正方形,側(cè)棱 PA 的長(zhǎng)為 8,且垂直于底面,點(diǎn) M . N 分別是 DC .AB 的中點(diǎn)。

求:(1)異面直線 PM CN 所成角的正切值;

2)四棱錐 P ABCD 的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果有窮數(shù)列、、、為正整數(shù))滿足條件、,即,我們稱其為“對(duì)稱數(shù)列”.例如,數(shù)列、、與數(shù)列、、、、都是“對(duì)稱數(shù)列”.

1)設(shè)項(xiàng)的“對(duì)稱數(shù)列”,其中、、、是等差數(shù)列,且,依次寫出的每一項(xiàng);

2)設(shè)項(xiàng)的“對(duì)稱數(shù)列”,其中、、是首項(xiàng)為,公比為的等比數(shù)列,求各項(xiàng)的和

3)設(shè)項(xiàng)的“對(duì)稱數(shù)列”,其中、是首項(xiàng)為,公差為的等差數(shù)列,求項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)若不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;

(3)求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案