【題目】如圖,在三棱柱中, 平面, ,且.

(1)求棱所成的角的大;

(2)在棱上確定一點,使二面角的平面角的余弦值為.

【答案】(1) (2)

【解析】試題分析:(1)因為ABAC,A1B⊥平面ABC,所以以A為坐標原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標系,由AB=AC=A1B=2求出所要用到的點的坐標,求出棱AA1BC上的兩個向量,由向量的夾角求棱AA1BC所成的角的大;
(2)設棱B1C1上的一點P,由向量共線得到P點的坐標,然后求出兩個平面PAB與平面ABA1的一個法向量,把二面角P-AB-A1的平面角的余弦值為,轉化為它們法向量所成角的余弦值,由此確定出P點的坐標.

試題解析:

解(1)如圖,以為原點建立空間直角坐標系,

.

,

與棱所成的角是.

(2)為棱中點,

,則.

設平面的法向量為,

,

而平面的法向量是,則,

解得,即為棱中點,其坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】201991日,《西安市生活垃圾分類管理辦法》正式實施.根據(jù)規(guī)定,生活垃圾分為可回收物、有害垃圾、廚余垃圾和其他垃圾,個人和單位如果不按規(guī)定進行垃圾分類將面臨罰款,并納入征信系統(tǒng).為調查市民對垃圾分類的了解程度,某調查小組隨機抽取了某小區(qū)的100位市民,請他們指出生活中若干項常見垃圾的種類,把能準確分類不少于3項的稱為比較了解,少于三項的稱為不太了解.調查結果如下:

0

1

2

3

4

5

5項以上

男(人)

1

5

15

8

6

7

3

女(人)

0

4

11

13

10

12

5

1)完成如下列聯(lián)表并判斷是否有99%的把握認為了解垃圾分類與性別有關?

比較了解

不太了解

合計

合計

2)從對垃圾分類比較了解的市民中用分層抽樣的方式抽取8位,現(xiàn)從這8位市民中隨機選取兩位,求至多有一位男市民的概率.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在其定義域內為單調函數(shù),求的取值范圍;

2)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家規(guī)定每年的日以后的天為當年的暑假.某鋼琴培訓機構對位鋼琴老師暑假一天的授課量進行了統(tǒng)計,如下表所示:

授課量(單位:小時)

頻數(shù)

培訓機構專業(yè)人員統(tǒng)計近年該校每年暑假天的課時量情況如下表:

課時量(單位:天)

頻數(shù)

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

1)估計位鋼琴老師一日的授課量的平均數(shù);

2)若以(1)中確定的平均數(shù)作為上述一天的授課量.已知當?shù)厥谡n價為/小時,每天的各類生活成本為/天;若不授課,不計成本,請依據(jù)往年的統(tǒng)計數(shù)據(jù),估計一位鋼琴老師天暑假授課利潤不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,E是棱PC上的一點.

(1)證明:平面平面 .

(2)若,F(xiàn)是PB的中點,,,求直線DF與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知兩點分別為橢圓的右頂點和上頂點,且,右準線的方程為.

1)求橢圓的標準方程;

2)過點的直線交橢圓于另一點,交于點.若以為直徑的圓經過原點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)給出兩個條件:①,②,從中選出一個條件補充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個都選,則按第一個解答計分)在中,分別為內角所對的邊( ).

1)求;

2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系x0y中,把曲線α為參數(shù))上每個點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程

1)寫出的普通方程和的直角坐標方程;

2)設點M上,點N上,求|MN|的最小值以及此時M的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)的圖像上存在兩個不同的點關于軸對稱,則稱函數(shù)圖像上存在一對偶點

1)寫出函數(shù)圖像上一對偶點的坐標;(不需寫出過程)

2)證明:函數(shù)圖像上有且只有一對偶點

3)若函數(shù)圖像上有且只有一對偶點,求的取值范圍.

查看答案和解析>>

同步練習冊答案